, Volume 32, Issue 6, pp 1643–1655 | Cite as

Interlocked grain and density patterns in Bagassa guianensis: changes with ontogeny and mechanical consequences for trees

  • Julie BossuEmail author
  • Romain Lehnebach
  • Stephane Corn
  • Arnaud Regazzi
  • Jacques Beauchêne
  • Bruno Clair
Original Article


Key message

Interlocked grain and basic density increase from pith to bark in Bagassa guianensis and greatly improve trunk torsional stiffness and wood tenacity in the radial plane.


Trees modulate their building material, wood, throughout their lifetime to meet changing mechanical needs. Basic density, a widely studied wood property, has been proved to be negatively correlated to growth rate and is then considered to reflect the diversity of species growth strategies. An alternative way for trees to modulate growth strategy at constant construction cost is changing the organisation of their fibre network. Interlocked grain, the result of a periodic change in the orientation of the fibres in the tangential plane, is found in numerous tropical tree species. In this study, we first describe the variations in basic density and interlocked grain occurring during ontogeny of Bagassa guianensis, a fast-growing Amazonian species, and analyse their influence on the local mechanical properties of wood at the tissue level. The observed radial patterns and properties are then incorporated in a finite element model to investigate their effect on mechanical properties of the trunk. We report extreme and highly reproducible concomitant radial variations in basic density and interlocked grain in all the sampled trees, with grain angle variations ranging from − 31° to 23°. Such changes in wood during ontogeny allows trees to tailor their growth rate while greatly improving resistance to torsion and reducing the risk of splitting.


Interlocked grain Basic density Wood radial patterns Tree architecture Growth strategy Biomechanics 



The authors thank Eric Nicolini (CIRAD—AMAP) and Onoefé NGwete (CIRAD—ECOFOG) for their help in tree identification and field work and Yves Caraglio (CIRAD—AMAP) to share his knowledge on Bagassa guianensis architecture. This research project was financially supported by the Labex CEBA (ANR-10-LABX-25-01), CNRS-INSIS and European Social Fund awards.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

468_2018_1740_MOESM1_ESM.eps (89 kb)
Sup. Mat. 1 A) Width of the IG half-period (P1/2) depending on their number. The red dashed line represents the median P1/2 value obtained for all IG periods. Tukey’s test showed no significant differences (pv=0.251). B) Maximal IG amplitudes corresponding to the amplitude peaks with absolute distance from the pith. Positive correlation between IG amplitude and absolute distance to the pith (IG amplitudes=2.7082+0.9931*r). The red dotted line represents the linear model (R2=0.54; pv< 2.2e-16) (EPS 88 KB)


  1. Arets EJMM, Van der Hout P, Zagt RJ (2003) Responses of tree populations and forest composition to selective logging in Guyana. In: Steege H (ed) Long-term changes in tropical tree diversity. Studies from the Guiana Shield, Africa, Borneo and Melanesia, Tropenbos Series 22. Tropenbos International Wageningen, Wageningen, pp 95–115Google Scholar
  2. Arostegui A (1982) Recopilacion y analisis de studios tecnologicos de maderas peruanas. FAO, LimaGoogle Scholar
  3. Ashby MF, Easterling KE, Harrysson R, Maiti SK (1985) The fracture and toughness of woods. Proc Royal Soc A Math Phys Eng Sci 398(1815):261–280CrossRefGoogle Scholar
  4. Barnett JR, Bonham VA (2004) Cellulose microfibril angle in the cell wall of wood fibres. Biol Rev 79(2):461–472CrossRefGoogle Scholar
  5. Barthelemy D, Caraglio Y (2007) Plant architecture: a dynamic, multilevel and comprehensive approach to plant form, structure and ontogeny. Ann Bot 99:375–407CrossRefGoogle Scholar
  6. Bossu J, Beauchêne J, Estevez Y, Duplais C, Clair B (2016) New Insights on wood dimensional stability influenced by secondary metabolites: the case of a fast-growing tropical species Bagassa guianensis Aubl. PLoS One 11:e0150777. CrossRefPubMedPubMedCentralGoogle Scholar
  7. Brémaud I, Cabrolier P, Gril J, Clair B, Gérard J, Minato K, Bernard Thibaut B (2010) Identification of anisotropic vibrational properties of padauk wood with interlocked grain. Wood Sci Technol 44(3):355–367CrossRefGoogle Scholar
  8. Brémaud I, El Kaïm Y, Guibal D, Minato K, Thibaut B, Gril J (2012) Characterisation and categorisation of the diversity in viscoelastic vibrational properties between 98 wood types. Ann For Sci 69(3):373–386CrossRefGoogle Scholar
  9. Cabrolier P (2009) Is interlocked grain an adaptive trait for tropical tree species in rainforest. In: 6th Plant Biomechanics Conference, CayenneGoogle Scholar
  10. Détienne P (1979) Contrefil à rythme annuel dans les faro Daniellia sp. Bois&Forêts des Tropiques 183:67–71Google Scholar
  11. Falster DS, Westoby M (2005) Tradeoffs between height growth rate, stem persistence and maximum height among plant species in a post-fire succession. Oikos 111:57–66CrossRefGoogle Scholar
  12. Fimbel R, Sjaastad E (1994) Wood specific gravity variability in Ceiba pentandra. Wood Fiber Sci 26(1):91–96Google Scholar
  13. Fournier M, Dlouhá J, Jaouen G, Almeras T (2013) Integrative biomechanics for tree ecology: beyond wood density and strength. J Exp Bot 64(15):4793–4815CrossRefGoogle Scholar
  14. Guitard D (1987) Mécanique du matériau bois et composites. Cépaduès (ed) 238p. ISBN 2 8548 152 7Google Scholar
  15. Hejnowicz Z, Romberger JA (1979) The common basis of wood grain figures is the systematically changing orientation of cambial fusiform cells. Wood Sci Technol 13(2):89–96CrossRefGoogle Scholar
  16. Hernandez RE, Almeida G (2003) Effects of wood density and interlocked grain on the shear strength of three Amazonian tropical hardwoods. Wood Fiber Sci 35(2):89–96Google Scholar
  17. Hernandez RE, Restrepo G (1995) Natural variation in wood properties of Alnus acuminata H.B.K. grown in Colombia. Wood and Fiber Sci 27:41–48Google Scholar
  18. Hietz P, Valencia R, Wright SJ (2013) Strong radial variation in wood density follows a uniform pattern in two neotropical rain forests. Funct Ecol 27:684–704CrossRefGoogle Scholar
  19. King DA, Davies SJ, NurSupardi MN, Tan S (2005) Tree growth is related to light interception and wood density in two mixed dipterocarp forests of Malaysia. Funct Ecol 19(3):445–453CrossRefGoogle Scholar
  20. Kollmann FFP, Côté WA (1968) Principles of wood science and technology. In: Solid wood. Springer, Berlin, 592 pGoogle Scholar
  21. Krawczyszyn J, Romberger JA (1979) Cyclical cell length changes in wood in relation to storied structure and interlocked grain. Can J Bot 57(7):787–794CrossRefGoogle Scholar
  22. Kribs DA (1950) Commercial foreign woods on the American market, a manual to their structure, identification, uses and distribution. Dissertation, Tropical Wood Laboratory, State College, 241 ppGoogle Scholar
  23. Lachenbruch B, Moore JR, Evans R (2011) Radial variation in wood structure and function in woody plants, and hypotheses for its occurrence. In: Meinzer F, Lachenbruch B, Dawson T (eds) Size- and age-related changes in tree structure and function. Tree physiology, 4th edn. Springer, DordrechtGoogle Scholar
  24. Larjavaara M, Muller-Landau HC (2010) Rethinking the value of high wood density. Funct Ecol 24(4):701–705CrossRefGoogle Scholar
  25. Lehnebach R, Morel H, Bossu J, Le Moguédec G, Amusant N, Beauchêne J, Nicolini E (2017) Heartwood/sapwood profile and the tradeoff between trunk and crown increment in a natural forest: the case study of a tropical tree (Dicorynia guianensis Amsh., Fabaceae). Trees Struct Funct 33(1):199–214. CrossRefGoogle Scholar
  26. Li X, Wu H, Southerton S (2011) Transcriptome profiling of Pinus Radiata juvenile wood with contrasting stiffness identifies putative candidate genes involved in microfibril orientation and cell wall mechanics. BMC Genom 12(1):480CrossRefGoogle Scholar
  27. Marsoem SN, Kikata Y (1987) The effect of interlocked grain on the mechanical properties of white meranti. Bull Nagoya Univ 9:51–77Google Scholar
  28. McLean JP, Zhang T, Bardet S, Beauchêne J, Thibaut A, Clair B, Thibaut B (2011) The decreasing radial wood stiffness pattern of some tropical trees growing in the primary forest is reversed and increases when they are grown in a plantation. Ann For Sci 68(4):681–688CrossRefGoogle Scholar
  29. Montero C, Clair B, Alméras T, Van der Lee A, Gril J (2012) Relationship between wood elastic strain under bending and cellulose crystal strain. Compos Sci Technol 72(2):175–181CrossRefGoogle Scholar
  30. Morel H, Nicolini É, Bossu J, Blanc L, Beauchêne J (2017) Qualité et usages du bois de cinq espèces forestières adaptées à la plantation à vocation de bois d’oeuvre et testées en Guyane française. Bois&Forêts des Tropiques 334:61–74. CrossRefGoogle Scholar
  31. Morel H, Lehnebach R, Cigna J, Ruelle J, Nicolini E, Beauchene J (2018) Basic wood density variations of Parkia velutina Benoist, a long-lived heliophilic tree of Neotropical rainforest. Bois & Forêts des Tropiques 335(1):59–69CrossRefGoogle Scholar
  32. Muller-Landau HC (2004) Interspecific and inter-site variation in wood specific gravity of tropical trees. Biotropica 36(1):20–32Google Scholar
  33. Nicolini E, Beauchêne J, Leudet de la Vallée B, Ruelle J, Mangenet T, Heuret P (2012) Dating branch growth units in a tropical tree using morphological and anatomical markers: the case of Parkia velutina Benoist (Mimosoïdeae). Ann For Sci 69(5):543–555CrossRefGoogle Scholar
  34. Omolodun OO, Cutter BE, Krause GF, McGinnes EA (1991) Wood quality in Hildegardia barteri (Mast.) Kossern—an African tropical pioneer species. Wood Fiber Sci 23(3):419–435Google Scholar
  35. Osazuwa-Peters OL, Wright SJ, Zanne AE (2014) Radial variation in wood specific gravity of tropical tree species differing in growth–mortality strategies. Am J Bot 101:803–811CrossRefGoogle Scholar
  36. Özden S, Slater D, Ennos R (2017) Fracture properties of green wood formed within the forks of hazel (Corylus avellana L.). Trees 31:903. CrossRefGoogle Scholar
  37. Parolin P (2002) Radial gradients in wood specific gravity in trees of central Amazonian floodplains. IAWA J 23(4):449–457Google Scholar
  38. Schneider CA, Rasband WS, Eliceiri KW (2012) Nih image to imagej: 25 years of image analysis. Nat Methods 9:671–675CrossRefGoogle Scholar
  39. Skatter S, Kucera B (1997) Spiral grain—an adaptation of trees to withstand stem breakage caused by wind-induced torsion. Holz als Roh-und Werkstoff 55(2–4):207–213CrossRefGoogle Scholar
  40. Skatter S, Kucera B (1998) The cause of the prevalent directions of the spiral grain patterns in conifers. Trees 12(5):265–273CrossRefGoogle Scholar
  41. Skatter S, Kucera B (2000) Tree breakage from torsional wind loading due to crown asymmetry. For Ecol Manag 135(1–3):97–103CrossRefGoogle Scholar
  42. Slater D, Ennos R (2015) Interlocking wood grain patterns provide improved wood strength properties in forks of hazel (Corylus avellana L.). Arboricult J Int J Urban For 37(1):21–32CrossRefGoogle Scholar
  43. Thinley C, Palmer G, Vanclay J et al (2005) Spiral and interlocking grain in Eucalyptus dunnii. Holz Roh Werkst 63:372. CrossRefGoogle Scholar
  44. Webb CD (1969) Variation of interlocked grain in sweetgum (Liquidambar styracifula). For Prod J 19(8):45–48Google Scholar
  45. Weddell E (1961) Influence of interlocked grain on the bending strength of timber, with particular reference to utile and greenheart. J Inst Wood Sci 7:56–72Google Scholar
  46. Whitmore JL (1973) Wood density variation in Costa Rican balsa. Wood Sci 5(3):223–229Google Scholar
  47. Wiemann MC, Williamson GB (1988) Extreme radial changes in wood specific gravity in some tropical pioneers. Wood Fiber Sci 20(3):344–349Google Scholar
  48. Wiemann MC, Williamson GB (1989) Radial gradients in the specific gravity of wood in some tropical and temperate trees. For Sci 35(1):197–210Google Scholar
  49. Williamson GB, Wiemann MC (2010) Age-dependent radial increases in wood specific gravity of tropical pioneers in Costa Rica. Biotropica 42(5):590–597CrossRefGoogle Scholar
  50. Williamson GB, Wiemann MC, Geaghan JP (2012) Radial wood allocation in Schizolobium parahyba. Am J Bot 99(6):1010–1019CrossRefGoogle Scholar
  51. Włoch W, Jura-Morawiec J, Kojs P, Iqbal M, Krawczyszyn J (2009) Does intrusive growth of fusiform initials really contribute to circumferential growth of vascular cambium? Botany 87(2):154–163CrossRefGoogle Scholar
  52. Woodcock DW, Shier AD (2002) Wood specific gravity and its radial variations: the many ways to make a tree. Trees 16:437–443CrossRefGoogle Scholar
  53. Yamamoto H, Sassus F, Ninomiya M, Gril J (2001) A model of anisotropic swelling and shrinking process of wood. Wood Sci Technol 35(1–2):167–181CrossRefGoogle Scholar
  54. Yao J (1970) Influence of growth rate on specific gravity and other selected properties of loblolly pine. Wood Sci Technol 4(3):163–175CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.CNRS, UMR EcoFoG, AgroParisTech, Cirad, InraUniversité des Antilles, Université de GuyaneKourouFrance
  2. 2.Laboratoire de Mécanique et Génie Civil (LMGC)Université de MontpellierMontpellierFrance
  3. 3.C2MA, IMT Mines AlesUniversité de MontpellierAles CedexFrance

Personalised recommendations