Advertisement

Trees

, Volume 32, Issue 5, pp 1457–1471 | Cite as

Physiological responses of Toxicodendron vernicifluum (Stokes) F.A. Barkley to cadmium stress under sufficient- and deficient-nitrogen conditions

  • Thi Tuyet Xuan Bui
  • Mei Lu
  • Dinh Duy Vu
  • Hien Ngoc Dinh
  • Niamat Ullah
  • Siddiq Ur Rahman
  • Xiao Hua Huang
  • Yi Zhang
Original Article
  • 56 Downloads

Abstract

Key message

Nitrogen application mitigated the inhibiting effects of Cd stress on T. vernicifluum by increasing enzymatic antioxidants and phytohormone.

Abstract

To disclose the potential roles of nitrogen (N) availability in adaptive responses of Toxicodendron vernicifluum (Stokes) F.A. Barkley to Cd stress, a greenhouse experiment was conducted. A factorial design consisting of sufficient N and deficient N was combined with moderate Cd stress condition. Major growth traits and photosynthesis were significantly suppressed by Cd stress under deficient-N condition, whereas N application mitigated the inhibiting effects of Cd stress. The ABA inducement and stoma adjustment upon Cd stress were more significant under sufficient-N status, which contributed to the higher tolerance to Cd stress. IAA level was depressed by Cd stress when N nutrient is deficient, leading to the significant suppression on growth, whereas the depression on IAA was alleviated by N addition, which contributed to better growth performance under Cd stress. Enzymatic antioxidants play a vital role in response to Cd stress. The activities of SOD, APX and GR in leaves, and POD, APX, GR and CAT in roots all were significantly induced upon Cd stress under sufficient-N condition. Moreover, the expression of most genes encoding antioxidant enzymes was significantly induced upon Cd stress when N nutrient was adequate. In contrast, the activities of most antioxidant enzymes and the expression of most genes encoding these enzymes were not significantly induced upon Cd stress under deficient-N conditions. These results indicated that adequate N nutrient improves the tolerance of T. vernicifluum to Cd stress via promoting hormone signaling and antioxidant systems.

Keywords

Nitrogen deficiency Cd stress ABA IAA Antioxidant enzymes T. vernicifluum 

Notes

Acknowledgements

This project was financially supported by the Start-up Project for Introduced Recruit in Northwest A&F University (no. Z111021402), the Fundamental Research Funds for the Central Universities (no. 2452016056), the Science and technology project of Shaanxi Province (2016NY-193).

Compliance with ethical standards

Conflict of interest

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

References

  1. Atici Ö, Ağar G, Battal P (2005) Changes in phytohormone contents in chickpea seeds germinating under lead or zinc stress. Biol Plantarum 49(2):215–222CrossRefGoogle Scholar
  2. Belleghem FV, Cuypers A, Semane B, Smeets K, Vangronsveld J, ďHaen J, Valcke R (2007) Subcellular localization of cadmium in roots and leaves of Arabidopsis thaliana. New Phytol 173:495–508CrossRefPubMedCentralGoogle Scholar
  3. Chen L, Han Y, Jiang H, Korpelainen H, Li C (2011) Nitrogen nutrient status induces sexual differences in responses to cadmium in Populus yunnanensis. J Exp Bot 62(14):5037–5050CrossRefPubMedCentralGoogle Scholar
  4. Chia MA, Lombardi AT, Melão MdGG, Parrish CC (2015) Combined nitrogen limitation and cadmium stress stimulate total carbohydrates, lipids, protein and amino acid accumulation in Chlorella vulgaris (Trebouxiophyceae). Aquat Toxicol 160:87–95CrossRefPubMedCentralGoogle Scholar
  5. Cho N, Choi JH, Yang H, Jeong EJ, Lee KY, Kim YC, Sung SH (2012) Neuroprotective and anti-inflammatory effects of flavonoids isolated from Rhus verniciflua in neuronal HT22 and microglial BV2 cell lines. Food Chem Toxicol 50:1940–1945CrossRefPubMedCentralGoogle Scholar
  6. Devi R, Munjral N, Gupta AK, Kaur N (2007) Cadmium induced changes in carbohydrate status and enzymes of carbohydrate metabolism, glycolysis and pentose phosphate pathway in pea. Environ Exp Bot 61(2):167–174CrossRefGoogle Scholar
  7. Dresler S, Wójcik M, Bednarek W, Hanaka A, Tukiendorf A (2015) The effect of silicon on maize growth under cadmium stress. Russ J Plant Physi 62(1):86–92CrossRefGoogle Scholar
  8. Du H, Wu N, Chang Y, Li X, Xiao J, Xiong L (2013) Carotenoid deficiency impairs ABA and IAA biosynthesis and differentially affects drought and cold tolerance in rice. Plant Mol Biol 83:475–488CrossRefPubMedCentralGoogle Scholar
  9. Finkemeier I, Kluge C, Metwally A, Georgi M, Grotjohann N, Dietz K (2003) Alterations in Cd-induced gene expression under nitrogen deficiency in Hordeum vulgare. Plant Cell Environ 26:821–833CrossRefPubMedCentralGoogle Scholar
  10. Guo B, Liang Y, Zhu Y (2009) Does salicylic acid regulate antioxidant defense system, cell death, cadmium uptake and partitioning to acquire cadmium tolerance in rice? J Plant Physiol 166(1):20–31CrossRefPubMedCentralGoogle Scholar
  11. Haribabu TE, Sudha PN (2011) Effect of heavy metals copper and cadmium exposure on the antioxidant properties of the plant cleome gynandra. Int J Plant Annu Environ Sci 1(2):80–87Google Scholar
  12. Hashida K, Tabata M, kuroda K, Otsuka Y, Kubo S, Makino R, Kubojima Y, Tonosaki M, Ohara S (2014) Phenolic extractives in the trunk of Toxicodendron vernicifluum: chemical characteristics, contents and radial distribution. J Wood Sci 60:160–168CrossRefGoogle Scholar
  13. Hatata MM, Abdel-Aal EA (2008) Oxidative stress and antioxidant defense mechanisms in response to cadmium treatments. Am Eur J Agric Environ 4:655–669Google Scholar
  14. He J, Qin J, Long L, Ma Y, Li H, Li K, Jiang X, Liu T, Polle A, Liang Z, Luo ZB (2011) Net cadmium flux and accumulation reveal tissue-specific oxidative stress and detoxification in Populus × canescens. Physiol Plantarum 143:50–63CrossRefGoogle Scholar
  15. He J, Ma C, Ma Y, Li H, Kang J, Liu T, Polle A, Peng C, Luo ZB (2013) Cadmium tolerance in six poplar species. Environ Sci Pollut Res 20:163–174CrossRefGoogle Scholar
  16. Hu YF, Zhou G, Na XF, Yang L, Nan WB, Liu X, Zhang YQ, Li JL, Bi YR (2013) Cadmium interferes with maintenance of auxin homeostasis in Arabidopsis seedlings. J Plant Physiol 170(11):965–975CrossRefPubMedCentralGoogle Scholar
  17. Jain M, Pal M, Gupta P, Gadre R (2007) Effect of cadmium on chlorophyll biosynthesis and enzymes of nitrogen assimilation in greening maize leaf segments: role of 2-oxoglutarate. Indian J Exp Biol 45:385–389PubMedPubMedCentralGoogle Scholar
  18. Khan MIR, Iqbal N, Masood A, Mobin M, Anjum NA, Khan NA (2016) Modulation and significance of nitrogen and sulfur metabolism in cadmium challenged plants. Plant Growth Regul 78:1–11CrossRefGoogle Scholar
  19. Kieffer P, Planchon S, Oufir M, Ziebel J, Dommes J, Hoffmann L, Hausman J-F, Renaut J (2009) Combining proteomics and metabolite analyses to unravel cadmium stress-response in poplar leaves. J Proteome Res 8(1):400–417CrossRefPubMedCentralGoogle Scholar
  20. Li Y, Zhang X, Yang Y, Duan B (2013) Soil cadmium toxicity and nitrogen deposition differently affect growth and physiology in Toxicodendron vernicifluum seedlings. Acta Physiol Plant 35:529–540CrossRefGoogle Scholar
  21. Loake G, Grant M (2007) Salicylic acid in plant defence-the players and protagonists. Curr Opin Plant Bio 10(5):466–472CrossRefGoogle Scholar
  22. Luo ZB, Janz D, Jiang X, Go C, Rennenberg H, Feussner I, Polle A (2009) Upgrading root physiology for stress tolerance by ectomycorrhizas: insights from metabolite and transcriptional profiling into reprogramming for stress anticipation. Plant Physiol 151:1902–1917CrossRefPubMedCentralGoogle Scholar
  23. Luo ZB, Li K, Gai Y, Göbel C, Wildhagen H, Jiang X, Feußner I, Rennenberg H, Polle A (2011) The ectomycorrhizal fungus (Paxillus involutus) modulates leaf physiology of poplar towards improved salt tolerance. Environ Exp Bot 72:304–311CrossRefGoogle Scholar
  24. Luo J, Li H, Liu T, Polle A, Peng C, Luo Z-B (2013) Nitrogen metabolism of two contrasting poplar species during acclimation to limiting nitrogen availability. J Exp Bot 64(14):4207–4224CrossRefPubMedCentralGoogle Scholar
  25. Malčovská SM, Dučaiová Z, Maslaňáková I, Bačkor M (2014) Effect of silicon on growth, photosynthesis, oxidative status and phenolic compounds of maize (Zea mays L.) grown in cadmium excess. Water Air Soil Pollut 225:1–11Google Scholar
  26. Meng S, Zhang C, Su L, Li Y, Zhao Z (2016) Nitrogen uptake and metabolism of Populus simonii in response to PEG-induced drought stress. Environ Exp Bot 123:78–87CrossRefGoogle Scholar
  27. Miller G, Suzuki N, Ciftci-Yilmaz S, Mittler R (2010) Reactive oxygen species homeostasis and signalling during drought and salinity stresses. Plant Cell Environ 33(4):453–467CrossRefPubMedCentralGoogle Scholar
  28. Noriega G, Caggiano E, Lecube ML, Cruz DS, Batlle A, Tomaro M, Balestrasse KB (2012) The role of salicylic acid in the prevention of oxidative stress elicited by cadmium in soybean plants. Biometals 25(6):1155–1165CrossRefPubMedCentralGoogle Scholar
  29. Panković D, Plesnićar M, Arsenijević-Maksimović I, Petrović N, Sakač Z, Kastori R (2000) Effects of nitrogen nutrition on photosynthesis in Cd-treated sunflower plants. Ann Bot 86:841–847CrossRefGoogle Scholar
  30. Peleg Z, Blumwald E (2011) Hormone balance and abiotic stress tolerance in crop plants. Curr Opin Plant Biol 14(3):290–295CrossRefPubMedCentralGoogle Scholar
  31. Perfus-Barbeoch L, Leonhardt N, Vavasseur A, Forestier C (2002) Heavy metal toxicity: cadmium permeates through calcium channels and disturbs the plant water status. Plant J 32:539–548CrossRefPubMedCentralGoogle Scholar
  32. Pietrini F, Iannelli MA, Pasqualini S, Massacci A (2003) Interaction of cadmium with glutathione and photosynthesis in developing leaves and chloroplasts of Phragmites australis (Cav.) Trin. ex Steudel. Plant Physiol 133:829–837CrossRefPubMedCentralGoogle Scholar
  33. Regier N, Streb S, Cocozza C, Schaub M, Cherubini P, Zeeman SC, Frey B (2009) Drought tolerance of two black poplar (Populus nigra L.) clones: contribution of carbohydrates and oxidative stress defence. Plant Cell Environ 32(12):1724–1736CrossRefPubMedCentralGoogle Scholar
  34. Remans T, Opdenakker K, Guisez Y, Carleer R, Schat H, Vangronsveld J, Cuypers A (2012) Exposure of Arabidopsis thaliana to excess Zn reveals a Zn-specific oxidative stress signature. Environ Exp Bot 84:61–71CrossRefGoogle Scholar
  35. Schützendübel A, Schwanz P, Teichmann T, Gross K, Langenfeld-Heyser R, Godbold DL, Polle A (2001) Cadmium-induced changes in antioxidative systems, hydrogen peroxide content, and differentiation in scots pine roots. Plant Physiol 127:887–898CrossRefPubMedCentralGoogle Scholar
  36. Sharma SS, Dietz K-J (2006) The significance of amino acids and amino acid-derived molecules in plant responses and adaptation to heavy metal stress. J Exp Bot 57(4):711–726CrossRefPubMedCentralGoogle Scholar
  37. Shi X, Zhang C, Wang H, Zhang F (2005) Effect of Si on the distribution of Cd in rice seedlings. Plant Soil 272:53–60CrossRefGoogle Scholar
  38. Shi WG, Li H, Liu TX, Polle A, Peng CH, Luo ZB (2015) Exogenous abscisic acid alleviates zinc uptake and accumulation in Populus × canescens exposed to excess zinc. Plant Cell Environ 38(1):207–223CrossRefPubMedCentralGoogle Scholar
  39. Shi H, Ma W, Song J, Lu M, Rahman SU, Bui TTX, Vu DD, Zheng H, Wang J, Zhang Y (2017) Physiological and transcriptional responses of Catalpa bungei to drought stress under sufficient- and deficient-nitrogen conditions. Tree Physiol 37(11):1457–1468CrossRefPubMedCentralGoogle Scholar
  40. Sofo A, Vitti A, Nuzzaci M, Tataranni G, Scopa A, Vangronsveld J, Remans T, Falasca G, Altamura MM, Degola F, Toppi LSd (2013) Correlation between hormonal homeostasis and morphogenic responses in Arabidopsis thaliana seedlings growing in a Cd/Cu/Zn multi-pollution context. Physiol Plantarum 149(4):487–498CrossRefGoogle Scholar
  41. Wang J, Chen J, Pan K (2013) Effect of exogenous abscisic acid on the level of antioxidants in Atractylodes macrocephala Koidz under lead stress. Environ Sci Pollut R 20(3):1441–1449CrossRefGoogle Scholar
  42. Wilkinson S, Davies WJ (2002) ABA-based chemical signalling: the co-ordination of responses to stress in plants. Plant Cell Environ 25(2):195–210CrossRefPubMedCentralGoogle Scholar
  43. Xing XH, Jiang HQ, Zhou Q, Xing H, Jiang HD, Wang SA (2016) Improved drought tolerance by early IAA- and ABA-dependent H2O2 accumulation induced by a-naphthaleneacetic acid in soybean plants. Plant Growth Regul 80:303–314CrossRefGoogle Scholar
  44. Xu N, Guo W, Liu J, Du N, Wang R (2015) Increased nitrogen deposition alleviated the adverse effects of drought stress on Quercus variabilis and Quercus mongolica seedlings. Acta Physiol Plant 37:107CrossRefGoogle Scholar
  45. Xue B, Zhang A, Jiang M (2009) Involvement of polyamine oxidase in abscisic acid-induced cytosolic antioxidant defense in leaves of maize. J Integr Plant Biol 51(3):225–234CrossRefPubMedCentralGoogle Scholar
  46. Yang Y, Sun C, Yao Y, Zhang Y, Achal V (2011) Growth and physiological responses of grape (Vitis vinifera “Combier”) to excess zinc. Acta Physiol Plantarum 33(4):1483–1491CrossRefGoogle Scholar
  47. Zengin FK (2006) The effects of Co2+ and Zn2+ on the contents of protein, abscisic acid, proline and chlorophyll in bean (Phaseolus vulgaris cv. Strike) seedlings. J Environ Biol 27(2):441–448PubMedPubMedCentralGoogle Scholar
  48. Zhang Y, Zhou ZC, Yang Q (2013) Genetic variations in root morphology and phosphorus efficiency of Pinus massoniana under heterogeneous and homogeneous low phosphorus conditions. Plant Soil 364:93–104CrossRefGoogle Scholar
  49. Zhao D, Reddy KR, Kakani VG, Reddy VR (2005) Nitrogen deficiency effects on plant growth, leaf photosynthesis, and hyperspectral reflectance properties of sorghum. Eur J Agron 22:391–403CrossRefGoogle Scholar
  50. Zheng H, Zhang X, Ma W, Song J, Rahman SU, Wang J, Zhang Y (2017) Morphological and physiological responses to cyclic drought in two contrasting genotypes of Catalpa bungei. Environ Exp Bot 138:77–87CrossRefGoogle Scholar
  51. Zong YZ, Shangguan ZP (2014) Nitrogen deficiency limited the improvement of photosynthesis in Maize by elevated CO2 under drought. J Integr Agric 13:73–81CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Thi Tuyet Xuan Bui
    • 1
    • 2
  • Mei Lu
    • 1
  • Dinh Duy Vu
    • 1
    • 3
  • Hien Ngoc Dinh
    • 1
  • Niamat Ullah
    • 4
  • Siddiq Ur Rahman
    • 1
  • Xiao Hua Huang
    • 1
  • Yi Zhang
    • 1
  1. 1.College of ForestryNorthwest A&F UniversityYanglingPeople’s Republic of China
  2. 2.Institute of Ecology and Biological ResourceVietnam Academy of Science and Technology (VAST)HanoiVietnam
  3. 3.Vietnam National Museum of Nature, VASTHanoiVietnam
  4. 4.Department of Human NutritionThe University of Agriculture PeshawarPeshawarPakistan

Personalised recommendations