Advertisement

Trees

, Volume 32, Issue 4, pp 1135–1146 | Cite as

Genetic variability of Araucaria angustifolia in the Argentinean Parana Forest and implications for management and conservation

  • María Virginia Inza
  • Natalia Cristina Aguirre
  • Susana Leonor Torales
  • Norberto Manuel Pahr
  • Hugo Enrique Fassola
  • Luis Fernando Fornes
  • Noga Zelener
Original Article
  • 87 Downloads

Abstract

Key message

Genetic variability of Araucaria angustifolia populations in Argentina was moderate-to-low and reduced by logging. Some studied populations and the plantation are valuable gene pools for conservation and management.

Abstract

The main forces shaping genetic variability of woody species in fragmented forest are the geographical distribution and demographic history of populations. We conducted molecular analyses to evaluate how these factors have affected Araucaria angustifolia genetic variability in the Argentinean Parana Forest and to identify valuable gene pools for conservation and management purposes. Using 706 polymorphic AFLP (Amplified Fragment Length Polymorphism) markers, we analyzed nine native populations with different logging history and one plantation (312 individuals) of an uncertain origin. Average genetic diversity for the native populations was moderate-to-low (He = 0.128) in accordance with their marginal location within Araucaria’s range. In general, genetic diversity of populations decreases from east to west with increasing distances from the main area of species distribution on southern Brazil. Logging may have been responsible for further reduction of genetic variability in the more intensely exploited populations of the southern region and in some private fields. The moderate genetic differentiation among populations (ΦPT = 0.080) suggests an increase in the genetic structure of remnant populations because of fragmentation. UPGMA and Bayesian analyses agreed with the geographic location of populations. Populations from the southern Provincial Parks at Araucaria’s range edges grouped and differed genetically more from other populations. The highest genetic diversity of the plantation (He = 0.155) suggests that its individuals could have originated from seeds collected from different and/or highly variable sources of Brazil and the northeast of Argentina.

Keywords

Araucaria angustifolia Genetic variation Geographical distribution Logging history Conservation Management 

Notes

Acknowledgements

This research was financed by the National Institute of Agricultural Technology (INTA) (PNFOR 044331). We thank the EEA INTA Montecarlo’s technical teams, who participated in plant collection in Misiones. We also thank María de la Paz Sarasola and Andrea González for DNA extraction assistance. We acknowledge Martin Pinazo for providing information of the plantation from the Reserve Forest of Campo Anexo Manuel Belgrano (CAMB) and Julia Sabio y García for language editing.

Compliance with ethical standards

Conflict of interest

The authors declare no conflict of interest.

References

  1. Aguirre NC (2014) Diversidad genética de Pino Paraná (Araucaria angustifolia) en la Selva Paranaense: Análisis genómico mediante marcadores moleculares AFLPs. Thesis for Degree in Genetics, Facultad de Ciencias Exactas, Químicas y Naturales, Universidad de Morón, Buenos Aires, ArgentinaGoogle Scholar
  2. Auler NMF, Reis MS, Guerra MP, Nodari RO (2002) The genetics and conservation of Araucaria angustifolia: I. Genetic structure and diversity of natural populations by means of non-adaptive variation in the state of Santa Catarina, Brazil. Genet Mol Biol 25:329–338CrossRefGoogle Scholar
  3. Behling H, Pillar VDP, Orlóci L, Bauermann SG (2004) Late Quaternary Araucaria forest, grassland (Campos), fire and climate dynamics, studied by high-resolution pollen, charcoal and multivariate analysis of the Cambará do Sul core in southern Brazil. Palaeogeogr Palaeoclimatol Palaeoecol 203:277–297CrossRefGoogle Scholar
  4. Bekessy SA, Allnutt TR, Premoli AC, Lara A, Ennos RA, Burgman MA, Cortes M, Newton AC (2002) Genetic variation in the vulnerable and endemic Monkey Puzzle tree, detected using RAPDs. Heredity 88:243–224CrossRefPubMedGoogle Scholar
  5. Bertolini MP (2000) Documento Base para la Discusión del Plan de Manejo del Parque Provincial de la Araucaria. Ministerio de Ecología y Recursos Naturales Renovables de la Provincia de Misiones. Administración de Parques Nacionales—Delegación Regional Nordeste ArgentinoGoogle Scholar
  6. Bittencourt JVM (2007) Proposta para conservação genética da Araucaria angustifolia. Pesq Flor Bras Colombo 55:87–93Google Scholar
  7. Bittencourt JVM, Sebbenn AM (2007) Patterns of pollen and seed dispersal in a small fragmented population of the wind-pollinated tree Araucaria angustifolia in southern Brazil. Heredity 99:580–591CrossRefPubMedGoogle Scholar
  8. Bittencourt JVM, Sebbenn AM (2009) Genetic effects of forest fragmentation in high-density Araucaria angustifolia populations in Southern Brazil. Tree Genet Genomes 5:573–582CrossRefGoogle Scholar
  9. Bonin A, Ehrich D, Manel S (2007) Statistical analysis of amplified fragment length polymorphism data: a toolbox for molecular ecologists and evolutionists. Mol Ecol 16:3737–3758CrossRefPubMedGoogle Scholar
  10. Cavers S, Navarro C, Lowe AJ (2004) Targeting genetic resource conservation in widespread species: a case of Cedrela odorata L. Forest Ecol Manage 197:285–294CrossRefGoogle Scholar
  11. Chebez JC, Hilgert N (2003) Brief history of conservation in the parana forest. In: Galindo-Leal C, de Gusmão Câmara I (eds) The Atlantic Forest of South America: biodiversity status, threats, and outlook. Island Press, Washington, pp 141–159Google Scholar
  12. Cohen KM, Finney SC, Gibbard PL, Fan JX (2013) The ICS International Chronostratigraphic Chart. Episodes 36:199–204Google Scholar
  13. Crisci JV, Katinas L, Posadas P (2000) Introducción a la teoría y práctica de la Biogeografía Histórica. Sociedad Argentina de Botánica, Buenos Aires, ArgentinaGoogle Scholar
  14. Crow JF, Aoki K (1984) Group selection for a polygenic behavioral trait: estimating the degree of population’s subdivision. Proc Natl Acad Sci USA 81:6073–6077CrossRefPubMedGoogle Scholar
  15. de Lacerda AE, Biscaia R, Nimmo E, Sebbenn AM (2013) Modeling the long-term impacts of logging on genetic diversity and demography of. Hymenaea courbaril Forest Sci 59(1):15–26CrossRefGoogle Scholar
  16. de la Torre A, López C, Yglesias E, Cornelius JP (2008) Genetic (AFLP) diversity of nine Cedrela odorata populations in Madre de Dios, southern Peruvian Amazon. Forest Ecol Manage 255:334–339CrossRefGoogle Scholar
  17. Degen B, Blanc L, Caron H, Maggia L, Kremer A, Gourlet-Fleury S (2006) Impact of selective logging on genetic composition and demographic structure of four tropical tree species. Biol Conserv 131:386–401CrossRefGoogle Scholar
  18. del Fueyo G, Caccavaru MA, Dome EA (2008) Morphology and structure of the pollen cone and pollen grain of the Araucaria species from Argentina. Biocell 32:49–60PubMedGoogle Scholar
  19. Di Bitetti MS, Placci G, Dietz LA (2003) Una Visión de Biodiversidad para la Ecorregión del Bosque Atlántico del Alto Paraná: Diseño de un Paisaje para la Conservación de la Biodiversidad y prioridades para las acciones de conservación. World Wildlife Fund, Washington, D.C.Google Scholar
  20. Earl DA, von Holdt BM (2012) Structure Harvester: a website and program for visualizing STRUCTURE output and implementing the Evanno method. Conserv Geneti Resour 4:359–361CrossRefGoogle Scholar
  21. Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software structure: a simulation study. Mol Ecol 14:2611–2620CrossRefPubMedGoogle Scholar
  22. Excoffier L, Smouse P, Quattro J (1992) Analysis of molecular human mitochondrial DNA restriction data. Genetics 131:479–491PubMedPubMedCentralGoogle Scholar
  23. Falush D, Stephens M, Pritchard JK (2007) Inference of population structure using multilocus genotype data: dominant markers and null alleles. Mol Ecol Notes 7:574–578CrossRefPubMedPubMedCentralGoogle Scholar
  24. Fassola HE, Ferrere P, Muñoz D, Pahr N, Kuzdra H, Márquez S (1999) Observaciones sobre la producción de frutos y semillas en plantaciones de Araucaria angustifolia (Bert) O. K. (período 1993–1998). Informe Técnico N° 24 INTA EEA Montecarlo, Montecarlo, Misiones, ArgentinaGoogle Scholar
  25. Fernández R, Fassola H, Moscovich F, Pinazo M, Pahr N (2005) Campo Manuel Belgrano Compromiso Público con la Conservación Genética de la Araucaria. Idia XXI Forestales Año 5(8):272–275Google Scholar
  26. Ferreira de Souza MI, Salgueiro F, Carnavale-Bottino M, Félix DB, Alves-Ferreira M, Bittencourt JVM, Margis R (2009) Patterns of genetic diversity in southern and southeastern Araucaria angustifolia (Bert.) O. Kuntze relict populations. Genet Mol Biol 32(3):546–556CrossRefGoogle Scholar
  27. Ferrero Klabunde GH (2012) Análise filogeográfica entre populações de Araucaria angustifolia. In: (Bert.) O. Kuntze em sua área de distribuição natural. Dissertação Grau de Mestre em Ciências. Programa de Pós-Graduação em Recursos Genéticos Vegetais da Universidade Federal de Santa Catarina, Santa Catarina, BrasilGoogle Scholar
  28. Finger A, Radespiel U, Habel JC, Kettle CJ (2014) Forest Fragmentation Genetics: What Can Genetics Tell Us About Forest Fragmentation? In: Kettle CJ, Koh LP (eds) Global Forest Fragmentation. Department of Environmental System Science, ETH Zurich, pp 50–68Google Scholar
  29. Finkeldey R, Hattemer HH (2007) Tropical forest genetics. Springer, BerlinCrossRefGoogle Scholar
  30. Gallo LA (2013) Domesticación y mejora de especies forestales nativas para la incertidumbre climática. Revista de Producción Forestal 7:39–42Google Scholar
  31. Gallo LA, Marchelli P, Chauchard L, Gonzalez Peñalba MG (2009) Knowing and doing: research leading to action in the conservation of forest genetic diversity of Patagonian Temperate Forests. Conserv Biol 23(4):895–898CrossRefPubMedGoogle Scholar
  32. Gillies ACM, Navarro C, Lowe AJ, Newton AC, Hernández M, Wilson J, Cornelius JP (1999) Genetic diversity in Mesoamerican populations of mahogany (Swietenia macrophylla), assessed using RAPDs. Heredity 83:722–732CrossRefPubMedGoogle Scholar
  33. Goya J, Sandoval M, Arturi M, Burns S, Russo F, Santacá M, Azcona M, Sañudo G (2012) Plan de Manejo Forestal del Campo Anexo Manuel Belgrano perteneciente a la EAA Montecarlo del INTA, Misiones. Laboratorio de Investigación de Sistemas Ecológicos y Ambientales (LISEA), Facultad de Ciencias Agrarias y Forestales. Universidad Nacional de La Plata, La Plata, Buenos AiresGoogle Scholar
  34. Hamrick JL, Godt MJW (1989) Allozyme diversity in plant species. In: Brown AHD, Clegg MT, Kahler AL, Weir BS (eds) Plant population genetics, breeding and genetic resources. Sinauer, Sunderland, pp 43–63Google Scholar
  35. Hamrick JL, Godt MJW, Sherman-Broyles SL (1992) Factors influencing levels of genetic diversity in woody plant species. New For 6:95–124CrossRefGoogle Scholar
  36. Holz S, Placci LG (2003) Socioeconomic roots of biodiversity loss in Misiones. In: Galindo L, De Gusmao Camara CI (eds) The Atlantic Forest of South America: Biodiversity Status, Threats and Outlook (State of the Hotspots, 1). Island Press, Center for Applied Biodiversity Science at Conservation International, Washington DC, pp 207–226Google Scholar
  37. Hueck K (1953) Distribiuçao e habitat natural do pinheiro do Paraná, Departamento de Botánica, Universidade deSão Pablo. São Pablo, BrasilGoogle Scholar
  38. Hueck K (1966) Die Wälder Südamerikas. Fischer Vlg., StuttgartGoogle Scholar
  39. Inza MV, Zelener N, Fornes L, Gallo LA (2012) Effect of latitudinal gradient and impact of logging on genetic diversity of Cedrela lilloi along the Argentine Yungas Rainforest. Ecol Evol 2(11):2722–2736CrossRefPubMedPubMedCentralGoogle Scholar
  40. IUCN (2018) IUCN red list of threatened species. https://www.iucnredlist.org. Version 2017.1. Accessed 16 Mar 2018
  41. Izquierdo AE, Grau HR, Mitchell Aide T (2011) Implications of Rural-Urban Migration for Conservation of the Atlantic Forest and Urban Growth in Misiones, Argentina (1970–2030). Ambio 40:298–309CrossRefPubMedGoogle Scholar
  42. Jump AS, Peñuelas JP (2007) Extensive spatial genetic structure revealed by AFLP but not SSR molecular markers in the wind-pollinated tree, Fagus sylvatica. Mol Ecol 16:925–936CrossRefPubMedGoogle Scholar
  43. Khan IA, Procunier JD, Humphreys DG, Tranquilly G, Schlatter AR, Marcucci Poltri S, Frohberg R, Dubcovsky J (2000) Development of PCR-based markers for a high grain protein content gene from Triticum turgidum ssp. dicoccoides transferred to bread wheat. Crop Sci 40:518–524CrossRefGoogle Scholar
  44. Kranitz ML, Biffin E, Clark A, Hollingsworth ML, Ruhsam M et al (2014) Evolutionary diversification of new Caledonian Araucaria. PLoS One 9(10):e110308CrossRefPubMedPubMedCentralGoogle Scholar
  45. Kremer A, Caron H, Cavers S, Colpaert N, Gheysen G, Gribel R, Lemes M, Lowe AJ, Margis R, Navarro C, Salgueiro F (2005) Monitoring genetic diversity in tropical trees with multilocus dominant markers. Heredity 95:274–280CrossRefPubMedGoogle Scholar
  46. Latorre F, Alarcón P, Fassola H (2013) Distribución temporal y espacial del polen de Araucaria angustifolia (Araucariaceae) en Misiones, Argentina. Bol Soc Argent Bot 48(3–4):453–464Google Scholar
  47. Ledru MP, Salgado-Labouriau ML, Lorscheitter ML (1998) Vegetation dynamics in southern and central Brazil during the last 10000 year BP. Rev Palaeobot Palynol 99:131–142CrossRefGoogle Scholar
  48. Lowe AJ, Boshier D, Ward M, Bacles CFE, Navarro C (2005) Genetic resource impacts of habitat loss and degradation; reconciling empirical evidence and predicted theory for neotropical trees. Heredity 95:255–273CrossRefPubMedGoogle Scholar
  49. Lynch M, Milligan BG (1994) Analysis of population genetic structure with RAPD markers. Mol Ecol 3:91–99CrossRefPubMedGoogle Scholar
  50. Mac Donagh P, Rivero L (2005) ¿Es posible el uso sustentable de los Bosques de la Selva Misionera? In: Brown A, Martínez Ortiz U, Acerbi M, Corcuera J (eds) La situación ambiental argentina 2005, 1st edn. Fundación Vida Silvestre Argentina, Buenos Aires, Argentina, pp 210–217Google Scholar
  51. Marchelli P, Baier C, Mengel C, Ziegenhagen B, Gallo LA (2010) Biogeographic history of the threatened species Araucaria araucana (Molina) K. Koch and implications for conservation: a case study with organelle DNA markers. Conserv Genet 11:951–963CrossRefGoogle Scholar
  52. Mariette S, Chagné D, Lécier C, Pastuszka P, Raffin A, Plomion C, Kremer A (2001) Genetic diversity within and among Pinus pinaster populations: comparison between AFLP and microsatellite markers. Heredity 86:469–479CrossRefPubMedGoogle Scholar
  53. Martin PR, McKay JK (2004) Latitudinal variation in genetic divergence of populations and the potential for future speciation. Evolution 58(5):938–945CrossRefPubMedGoogle Scholar
  54. Medri C, Ruas PM, Higa AR, Murakami M, de Fátima Ruas C (2003) Effects of forest management on the genetic diversity in a population of Araucaria angustifolia (Bert.). O Kuntze Silvae Genet 52:202–205Google Scholar
  55. Nei M (1973) Analysis of gene diversity in subdivided populations. Proc Natl Acad Sci USA 70:3321–3323CrossRefPubMedGoogle Scholar
  56. Nei M (1978) Estimation of average heterozygosity and genetic distance from a small number of individuals. Genetics 89:583–590PubMedPubMedCentralGoogle Scholar
  57. Newton AC, Allnutt TR, Gillies ACM, Lowe AJ, Ennos RA (1999) Molecular phylogeography, intraspecific variation and the conservation of tree species. Tree 14(4):140–145PubMedGoogle Scholar
  58. Nybom H (2004) Comparison of different nuclear DNA markers for estimating intraspecific genetic diversity in plants. Mol Ecol 13:1143–1155CrossRefPubMedGoogle Scholar
  59. Peakall R, Smouse PE (2006) GENALEX6: genetic analysis in Excel. Population genetics software for teaching and research. Mol Ecol Notes 6:288–295CrossRefGoogle Scholar
  60. Placci LG (2000) El desmonte en Misiones: impactos y medidas de mitigación. In: Bertonatti C, Corcuera J (eds) Situación Ambiental Argentina 2000. Fundación Vida Silvestre Argentina, Buenos Aires, Argentina, pp 349–354Google Scholar
  61. Placci G, Di Bitetti M (2005) Situación ambiental en la ecorregión del Bosque Atlántico del Alto Paraná (Selva Paranaense). In: Brown A, Martínez Ortiz U, Acerbi M, Corcuera J (eds) La situación ambiental argentina 2005, 1st edn. Fundación Vida Silvestre Argentina, Buenos Aires, Argentina, pp 197–210Google Scholar
  62. Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959PubMedPubMedCentralGoogle Scholar
  63. Pye MG, Gadek PA (2004) Genetic diversity, differentiation and conservation in Araucaria bidwilli (Araucariaceae), Australia’s Bunya pine. Conserv Genet 5:619–629CrossRefGoogle Scholar
  64. Pye MG, Henwood MJ, Gadek PA (2009) Differential levels of genetic diversity and divergence among populations of an ancient Australian rainforest conifer, Araucaria cunninghamii. Plant Syst Evol 277:173–185CrossRefGoogle Scholar
  65. Ragonese A, Castiglione J (1946) Los pinares de Araucaria angustifolia en la República. Argentina Boletín de la Sociedad Argentina de Botánica 1(2):126–147Google Scholar
  66. Rau MF (2005) Land Use Change and Natural Araucaria Forest Degradation Northeastern Misiones, Argentina.Dissertation to the Doctorate of the Faculty of Forestry, Albert-Ludwigs-University Freiburg in Breisgau, GermanyGoogle Scholar
  67. Rohlf FJ (1998) NTSYS-PC Numerical Taxonomy and Multivariate Analysis System version 2.0. Exeter Software, SetauketGoogle Scholar
  68. Sarasola M, Zelener N, Fassola H, Pahr N, Fernandez R, Torales S (2011) Diversidad genética de Araucaria angustifolia (Bert.) O. Ktze. en una Reserva Forestal Argentina. Análisis de semillas 5:84–88Google Scholar
  69. SAyDS (2007) Primer Inventario Nacional de Bosques Nativos. Informe Regional Selva Misionera. Secretaría de Ambiente y Desarrollo Sustentable de la Nación, Buenos Aires, ArgentinaGoogle Scholar
  70. Sebbenn AM, Pontinha AAS, Giannotti E, Kageyama PY (2003) Genetic variation in provenance-progeny test of Araucaria angustifolia (Bert.) O. Ktze. in Saõ Paulo, Brazil. Silvae Genet 52:181–184Google Scholar
  71. Silveira Wrege M, Higa RCV, Miranda Britez R, Cordeiro Garrastazu M, de Sousa VA, Caramori PH, Radin B, Braga HJ (2009) Climate change and conservation of Araucaria angustifolia in Brazil. Unasylva 60(231–232):30–33Google Scholar
  72. Soldati MC, Fornes L, van Zonneveld M, Thomas E, Zelener N (2013) An assessment of the genetic diversity of Cedrela balansae (Meliaceae) in Northwestern Argentina by means of combined use of SSR and AFLP molecular markers. Biochem Syst Ecol 47:45–55CrossRefGoogle Scholar
  73. Sousa VA, Robinson IP, Hattemer HH (2004) Variation and population structure at enzyme gene loci in Araucaria angustifolia (Bert.) O. Ktze. Silvae Genet 53:12–19Google Scholar
  74. Souza AF, Forgiarini C, Longhi SJ, Brena DA (2008) Regeneration patterns of a long-lived dominant conifer and the effects of logging in southern South America. Acta Oecol 34:221–223CrossRefGoogle Scholar
  75. Stefenon VM, Gailing O, Finkeldey R (2007) Genetic structure of Araucaria angustifolia (Araucariaceae) populations in Brazil: implications for the in situ conservation of genetic resources. Plant Biol 9:516–525CrossRefPubMedGoogle Scholar
  76. Stefenon VM, Behling H, Gailing O, Finkeldey R (2008a) Evidences of delayed size recovery in Araucaria angustifolia populations after post-glacial colonization of highlands in Southeastern Brazil. An Acad Bras Cienc 80:433–443CrossRefPubMedGoogle Scholar
  77. Stefenon VM, Gailing O, Finkeldey R (2008b) Genetic structure of plantations and the conservation of genetic resources of Brazilian pine (Araucaria angustifolia). For Ecol Manage 255:2718–2725CrossRefGoogle Scholar
  78. Stefenon VM, Steiner N, Guerra M, Nodari R (2009) Integrating approaches towards the conservation of forest genetic resources: a case study of Araucaria angustifolia. Biodivers Conserv 18:2433–2448CrossRefGoogle Scholar
  79. Vekemans X (2002) AFLP-SURV version 1.0. Distributed by the author. Laboratoire de Génétique et Ecologie Végétale, Université Libre de Bruxelles, BelgiumGoogle Scholar
  80. Vos P, Hogers R, Bleeker M, Reijans M, van de Lee T, Hornes M, Frijters A, Pot J, Peleman J, Kuiper M, Zabeau M (1995) AFLP: a new technique for DNA fingerprinting. Nucleic Acids Res 23:4407–4414CrossRefPubMedPubMedCentralGoogle Scholar
  81. Young AG, Boyle TJ (2000) Forest Fragmentation. In: Young A, Boshier D, Boyle TJ (eds) Forest conservation genetics: principles and practice. CSIRO, CABI, Australia, pp 123–134CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • María Virginia Inza
    • 1
  • Natalia Cristina Aguirre
    • 2
  • Susana Leonor Torales
    • 1
  • Norberto Manuel Pahr
    • 3
  • Hugo Enrique Fassola
    • 3
  • Luis Fernando Fornes
    • 4
  • Noga Zelener
    • 1
  1. 1.Instituto de Recursos BiológicosCIRN, INTA Castelar-CNIABuenos AiresArgentina
  2. 2.Instituto de BiotecnologíaCICVyA, INTA Castelar-CNIABuenos AiresArgentina
  3. 3.EEA INTA MontecarloMontecarloArgentina
  4. 4.EEA INTA FamailláFamailláArgentina

Personalised recommendations