, Volume 32, Issue 2, pp 587–602 | Cite as

Using radiocarbon-calibrated dendrochronology to improve tree-cutting cycle estimates for timber management in southern Amazon forests

  • Dirceu Lucio C. de Miranda
  • Niro Higuchi
  • Susan E. Trumbore
  • João Vicente F. Latorraca
  • Jair F. do Carmo
  • Adriano J. N. Lima
Original Article


Key message

Growth rings are investigated in trees harvested in the second cutting cycle in southern Amazonia and have important implications for dendrochronological studies and for forest management.


In the southern Brazilian Amazon, upland moist forests have been managed based on a polycyclic system, which cutting cycle (CC) varies from 25 to 35 years, and the minimum logging diameter (MLD) is 50 cm for all species. Many forests logged during the 1970s are being prepared for the second cycle. However, without growth and yield rates information on the remaining forests as well as for individual species, the principles of sustainable management will be jeopardized. For species with annual growth rings, such information can be obtained using dendrochronological techniques. This study investigated the periodicity of rings in Qualea paraensis and Parkia pendula in a forest that had already experienced one cutting cycle. This information was used to estimate growth and yield rates, and adjusting to equations to estimate individual species MLD and CC. Dendrochronological techniques were combined with radiocarbon analyses to confirm whether rings were annual. Rings of Q. paraensis were confirmed to be annual without radiocarbon analysis. However, P. pendula rings were poorly distinguishable; therefore, delimitation and ring counting were systematically underestimated by 10%. Growth and yield rates of managed forests were favored by logging. The MLD should be 53 cm for Q. paraensis, and 42 cm for P. pendula; and the CC must be 11 and 17 years, respectively. It is concluded that MLD and CC legally defined by the Brazilian laws are not adequate for the studied species; in addition, the use of radiocarbon-calibrated dendrochronology technique is essential to produce robust and unbiased estimates of growth and yield rates.


Forest management Moist forest Timber species Minimum logging diameter Radiocarbon dating 



We are grateful for the logistical and structural support provided by the following institutions: Federal University of Mato Grosso, National Institute of Research of the Amazon, Federal Rural University of Rio de Janeiro and the University of California, which were all of fundamental importance for accomplishing this study.

Compliance with ethical standards

Conflict of interest

The authors declare no conflicts of interest.


  1. Alvares CA, Stape JL, Sentelhas PC, Gonçalves JL, Sparovek G (2014) Köppen’s climate classification map for Brazil. Meteorol Z 22:711–728. CrossRefGoogle Scholar
  2. Andreacci F, Botosso PC, Galvão F (2014) Sinais climáticos em anéis de crescimento de Cedrela fissilis em diferentes tipologias de Florestas Ombrófilas do Sul do Brasil. Floresta 44:323–332. CrossRefGoogle Scholar
  3. Andreu-Hayles L, SANTOS GM, Herrera-Ramírez DA, Martin-Fernandez J, Ruiz-Carrascal D, Boza-Espinoza TE, Fuentes AF, Jorgensen PM (2015) Matching dendrochronological with the southern hemisphere 14C bomb curve to confirm annual tree rings in Pseudolmedia rígida from Bolívia. Radioc 57:1–13. CrossRefGoogle Scholar
  4. Baker JCA, Santos GM, Gloor M, Brienen RJW (2017) Does Cedrela always form annual rings? Testing ring periodicity across South America using radiocarbon dating. Trees 31:1999–2009. CrossRefGoogle Scholar
  5. Braz EM, Mattos PP, Oliveira MF, Bassos RO (2014) Strategies for achieving sustainable logging rate in the Brazilian Amazon Forest. O J For 4:100–105. Google Scholar
  6. Brienen RJW, Zuidema PA (2005) Relating tree growth to rainfall in Bolivian rain forests: a test for six species using tree ring analysis. Oecol 146:1–12. CrossRefGoogle Scholar
  7. Brienen RJW, Zuidema PA (2006) The use of tree rings in tropical forest management: projecting timber yields of four Bolivian tree species. For Ecol Manag 226:256–267. CrossRefGoogle Scholar
  8. Brienen RJW, Zuidema PA, Martinez-Ramos MM (2010a) Attaining the canopy in dry and moist tropical forests: strong differences in tree growth trajectories reflect variation in growing conditions. Oecol 163:485–496. CrossRefGoogle Scholar
  9. Brienen RJW, Lebrija-Trejos E, Zuidema PA, Martínez-Ramos MM (2010b) Climate-growth analysis for a Mexican dry forest tree shows strong impact of sea surface temperatures and predicts future growth declines. Glob Change Biol 16:2001–2012. CrossRefGoogle Scholar
  10. Brienen RJW, Schöngart J, Zuidema PA (2016) Tree rings in the tropics: insights into the ecology and climate sensitivity of tropical trees. In: Goldstein G, Santiago LS (eds) Tropical tree physiology: adaptations and responses in a changing environment, Springer, Berlin, pp 439–461.
  11. Chambers JQ, Higuchi N, Schimel J (1998) Ancient trees in Amazonia. Nature 391:135–136CrossRefGoogle Scholar
  12. Colpini C, Travagin DP, Soares TS, Silva VSM (2009) Determinação do volume, do fator de forma e da porcentagem de casca de árvores individuais em uma Floresta Ombrófila Aberta na região noroeste de Mato Grosso. Acta Amaz 39:97–104CrossRefGoogle Scholar
  13. Cook ER, Holmes RL (1984) Program ARSTAN users manual, laboratory of tree ring research. University of Arizona, TucsonGoogle Scholar
  14. Cook ER, Kairiukstis LA (1990) Methods of dendrochronology: applications in the environmental sciences. Springer, NetherlandsCrossRefGoogle Scholar
  15. Costa DHM, Silva JNM, Carvalho JOP (2008) Crescimento de árvores de uma área de terra firma na Floresta Nacional do tapajós após a colheita de madeira. Rev Cienc Agrar 50:63–76Google Scholar
  16. Cunha TA, Finger CA, Hasenauer H (2016) Tree basal area increment models for Cedrela, Amburana, Copaifera and Swietenia growing in the Amazon rain forests. For Ecol Manag 365:174–183. CrossRefGoogle Scholar
  17. De Ridder M, Van den Bulcke J, Van Acker J, Beeckman H (2013) Tree-ring analysis of an African long-lived pioneer species as a tool for sustainable forest management. For Ecol Manag 304:417–426. CrossRefGoogle Scholar
  18. Dezzeo N, Worbes M, Ishii I, Herrera R (2003) Annual tree rings revealed by radiocarbon dating in seasonally flooded forest of the Mapire River, a tributary of the lower Orinoco River, Venezuela. Plant Ecol 168:165–175CrossRefGoogle Scholar
  19. Douglass AE (1941) Crossdating in dendrochronology. J Forest 39:825–831Google Scholar
  20. Dünisch O, Latorraca JVF (2016) Impact of site conditions changes on the tree ring records suitability as climate proxies in the Brazilian Amazon. Floresta e Ambiente 23:258–269. CrossRefGoogle Scholar
  21. Durgante FM (2016) Dinâmica de crescimento e incremento de espécies dominantes no Amazonas. Instituto Nacional de Pesquisas da Amazônia ManausGoogle Scholar
  22. Fichtler E, Clark DA, Worbes M (2003) Age and Long-term growth of trees in an old-growth Tropical Rain Forest, based on analyses of tree rings and 14C. Biotropica 35:306–317. CrossRefGoogle Scholar
  23. Groenendijk P, Sass-Klaassen U, Bongers F, Zuidema PA (2014) Potential of tree-ring analysis in a wet tropical forest: A case study on 22 commercial tree species in Central Africa. For Ecol Manag 323:65–78. CrossRefGoogle Scholar
  24. Higuchi MIG, Higuchi N (2012) A floresta amazônica e suas múltiplas dimensões. Uma proposta de educação ambiental, ManausGoogle Scholar
  25. Holmes RL (1983) Computer-assisted quality control in tree-ring dating and measurement. Tree-Ring Bull 43:69–78Google Scholar
  26. Hua Q, Barbetti M, Rakowski AZ (2013) Atmospheric radiocarbon for the period 1950–2010. Radiocorbon 55(4):2059–2072. CrossRefGoogle Scholar
  27. IBGE-Instituto Brasileiro de Geografia e Estatística (2012) Manual Técnico da Vegetação Brasileira: Série Manuais Técnicos em Geociências. 2ªed revista e ampliada, Rio de JaneiroGoogle Scholar
  28. INPE-Instituto Nacional de Pesquisas Espaciais (2017) Projeto Prodes—Monitoramento da Amazônia brasileira por satélite. Taxas anuais de 1988–2016. Accessed 17 May 2017
  29. Jardim FCS, Soares MS (2010) Comportamento de Sterculia pruriens (Aubl.) Schum. em floresta tropical manejada em Moju-PA. Acta Amaz 40:535–542CrossRefGoogle Scholar
  30. Kalnay E et al (1996) The NCEP/NCAR reanalysis 40 year project. Bull Amer Meteor Soc 77:437–471CrossRefGoogle Scholar
  31. Leoni JM, Schöngart J (2011) Fonseca Júnior da SF. Growth and population structure of the tree species Malouetia tamaquarina (Aubl.) (Apocynaceae) in the central Amazonian floodplain forests and their implication for management. For Ecol Manag 261:62–67. CrossRefGoogle Scholar
  32. Lisi CS, Pessenda LCR, Tomazello M, Rozanski K (2001) 14C Bomb effect in tree rings of tropical and subtropical species of Brazil. Tree-ring research 57:191–196Google Scholar
  33. López L, Villalba R, Bravo F (2013) Cumulative diameter growth and biological rotation age for seven tree species in the Cerrado biogeographical province of Bolivia. For Ecol Manag 292:49–55. CrossRefGoogle Scholar
  34. Lorenzi H (2002) Árvores brasileiras—manual de identificação e cultivo de plantas arbóreas nativas do Brasil. Plantarum, Nova OdessaGoogle Scholar
  35. Loureiro AA, Silva MF (1977) Contribuição para o estudo dendrológico e anatômico da madeira de três espécies de Qualea (Vochysiaceae) da Amazônia. Acta Amaz 7:407–416CrossRefGoogle Scholar
  36. Loureiro AA, Freitas JA, Ramos KBL, Freitas CAA (2000) Essências madeireiras da Amazônia. MCT/INPA/CPPF, ManausGoogle Scholar
  37. Mozeto AA, Fritz P, Moreira MZ, Vetter E, Aravena R, Salati E, Drimmie RJ (1998) Growth rates of natural Amazonian forest trees based on radiocarbon measurements. Radiocorbon 30:1–6. Google Scholar
  38. Nakamura T, Masuda K, Miyake F, Nagaya K, Yoshimitsu T (2013) Radiocarbon ages of annual rings from Japanese wood evident age offset based on intcal09. Radiocorbon 55:763–770. CrossRefGoogle Scholar
  39. Nebel G (2001) Minquartia guianensis Aubl.: use, ecology and management in forestry and agroforestry. For Ecol Manag 150:115–124. CrossRefGoogle Scholar
  40. Nydal R, Lovseth K (1983) Tracing bomb 14C in the atmosphere 1962–1980. J Geophys Res 88:3621–3642. CrossRefGoogle Scholar
  41. Ohashi S, Durgante FM, Kagawa A, Kajimoto T, Trumbore SE, Xu X, Ishizuka M, Higuchi N (2015) Seasonal variation in the stable oxygen ratio of wood cellulose reveal annual rings of trees in a Central Amazon terra firme forest. Oecologia 180:685–696. CrossRefPubMedGoogle Scholar
  42. Orosco LEB, Morales SH, Hernandez GG, Garcia VC, Diaz JV (2013) Dendrochronological potential of Fraxinus uhdei and its use as bioindicator of fossil Co2 emissions deduced from radiocarbon concentrations in tree rings. Radioc 55:833–840. CrossRefGoogle Scholar
  43. Pucha-Cofrep D, Peters T, Bräuning A (2015) Wet season precipitation during the past century reconstructed from tree-rings of a tropical dry forest in Southern Ecuador. Global Planet Change 133:65–78. CrossRefGoogle Scholar
  44. Ramírez JA, del Valle JI (2011) Paleoclima de La Guajira, Colombia; según los anillos de crecimiento de Capparis odoratissima (Capparidaceae). Rev Biol Trop 59:1389–1405PubMedGoogle Scholar
  45. Ramsey CB, Dee M, Lee S, Nakagawa T, Staff R (2010) Developments in the calibration and modelling of radiocarbon dates. Radiocorbon 52:953–961. CrossRefGoogle Scholar
  46. Reis ARS, Abreu JLL, Pinho DM, Lisboa PLB, Urbinati CV (2014) Caracterização anatômica da madeira de mandioqueira (Qualea Aubl.) comercializada no mercado madeireiro do estado do Pará. Enciclopedia Biosfera 10:448–462Google Scholar
  47. Rodríguez R, Mabres A, Luckman B, Evans M, Masiokas M, Ektvedt TM (2005) “El Niño” events recorded in dry-forest species of the lowlands of northwest Peru. Dendroc 22:181–186. CrossRefGoogle Scholar
  48. Rosa SA, Barborsa ACMC., Junk WJ, Nunes da Cunha C, Piedade MTF, Scabin AB, Schöngart J (2017) Growth models based on tree-ring data for the Neotropical tree species Calophyllum brasiliense across different Brazilian wetlands: implications for conservation and management. Trees 31:729–742. CrossRefGoogle Scholar
  49. Rozendaal DMA, Brienen RJW, Soliz-Gamboa CC, Zuidema PA (2010) Tropical tree rings reveal preferential survival of fast-growing juveniles and increased juvenile growth rates over time. New Phytol 185:759–769. CrossRefPubMedGoogle Scholar
  50. Santos GM, Linares R, Lisi CS, Tomazello Filho M (2015) Annual growth rings in a sample of Paraná pine (Araucaria angustifolia): Toward improving the 14C calibration curve for the Southern Hemisphere. Quat Geo 25:96–103. CrossRefGoogle Scholar
  51. Scabin AB, Costa FRC, Schöngart J (2012) The spatial distribution of illegal logging in the Anavilhanas archipelago (Central Amazonia) and logging impacts on species. Environ Conserv 39:111–121. CrossRefGoogle Scholar
  52. Schöngart J (2003) Dendrochronologische Untersuchungen in Überschwemmungswäldern der várzea Zentralamazoniens. Göttinger Beiträge zur Land und Forstwirtschaft in den Tropen und Subtropen 149. Erich Goltze Verlag, GöttingenGoogle Scholar
  53. Schöngart J (2008) Growth-oriented logging (GOL): a new concept towards sustainable forest management in Central Amazonian várzea floodplanis. For Ecol Manag 256:46–58. CrossRefGoogle Scholar
  54. Schöngart J, Wittmann F, Worbes M, Piedade MTF, Krambeck HJ, Junk WJ (2007) Management criteria for Ficus insipida Willd. (Moraceae) in Amazonian white-water floodplain forests defined by tree-ring analysis. Ann Forest Sci 64:657–664. CrossRefGoogle Scholar
  55. Schöngart J, Gribel R, Fonseca-Junior SF, Haugaasen T (2015) Age and growth patterns of Brazil nut trees (Bertholletia excelsa Bonpl.) in Amazonia, Brazil. Biot 47:550–558. CrossRefGoogle Scholar
  56. Silva CA (1992) Variação dimensional dos elementos xilemáticos em duas espécies madeireiras da Amazônia. Acta Amaz 22:261–274CrossRefGoogle Scholar
  57. Silva JNM, Carvalho JOP, Lopes do JCA, Almeida BF de, Costa DHM, Oliveira LC de, Vanclay JK, Skovsgaard JP (1995) Growth and yield of a tropical rain forest in the Brazilian Amazon 13 years after logging. For Ecol Manag 71:267–274. CrossRefGoogle Scholar
  58. Silva CS da, Silva F da, Carneiro VMC, Lima AJN, Santos J dos, Higuchi N (2016) Avaliação da estrutura de uma floresta submetida a diferentes intensidades de anelamento, 28 anos após a intervenção. Sci For 44:987–999. Google Scholar
  59. Soliz-Gamboa CC, Rozendaal DMA, Ceccantini G, Angyalossy V, Van Der Borg K, Zuidema PA (2011) Evaluating the annual nature of juvenile rings in Bolivian tropical rainforest trees. Trees 25:17–27. CrossRefGoogle Scholar
  60. Souza MH, Magliano MM, Camargos JAA (1997) Madeiras tropicais brasileiras. IBAMA/LPF, BrasíliaGoogle Scholar
  61. Souza AP, Mota LL, Zamadei T, Martim CC, Almeida FT, Paulino J (2013) Classificação climática e balança hídrico climatológico no estado de Mato Grosso. Nativa 1:34–43CrossRefGoogle Scholar
  62. Souza DV, Carvalho, JOPde,, Silva JNM, Jardim FCdaS (2014) Mendes FdaS, Melo LdeO. Growth of Manilkara huberi and Manilkara paraensis after logging and silvicultural treatments in the municipality of Paragominas, Para, Brazil. Floresta 44:485–496CrossRefGoogle Scholar
  63. Steinhof A, Adamiec G, Gleixner G, van Klinken GH, Wagner T (2004) The new 14C analysis laboratory in JENA. Germany Radioc 46:51–58. Google Scholar
  64. Steinhof A, Altenburg M, Matchts H (2017) Sample preparation at the JENA 14C laboratory. Radioc 59:815–830. CrossRefGoogle Scholar
  65. Vatraz S, Carvalho JOP de, Gomes JM, Taffarel M, Ferreira FER (2012) Efeitos de tratamentos silviculturais sobre o crescimento de Laetia procera (Poepp.) Eichler em Paragominas, PA, Brasil. Sci For 40:95–102Google Scholar
  66. Vidal E, Viana VM, Batista JLF (2002) Crescimento de floresta tropical três anos após colheita de madeira com e sem manejo florestal na Amazônia oriental. Sci For 61:133–143Google Scholar
  67. Vieira SA (2003) Mudanças globais e taxa de crescimento arbóreo na Amazônia. Universidade de São Paulo, São PauloGoogle Scholar
  68. Vieira S, Trumbore S, Camargo PB, Selhorst D, Chambers JQ, Higuchi N, Martinelli LA (2005) Slow growth rates of amazon trees: consequences for carbon cycling. PNAS 102:18502–18507. CrossRefPubMedPubMedCentralGoogle Scholar
  69. Vogel JC, FULS A, Visser E (2001) Radiocarbon adjustments to the dendrochronology of a yellowwood tree. S Afric J Sci 97:164–166Google Scholar
  70. Wils THG, Robertson J, Eshetu Z, Touchan R, Sass-Klaassen U, Koprowski M (2011) Crossdating Juniperus procera from North Gondar. Ethiopia Trees 25:71–82. CrossRefGoogle Scholar
  71. Worbes M (1995) How to measure growth dynamics in tropical trees—a review. IAWA J 16:337–351CrossRefGoogle Scholar
  72. Worbes M (2002) One hundred years of tree-ring research in the tropics—a brief history and na outlook to future challenges. Dendroc 20:217–231CrossRefGoogle Scholar
  73. Worbes M, Junk WJ (1989) Dating tropical trees by means of 14C from bomb test. Ecol 70:503–507CrossRefGoogle Scholar
  74. Worbes M, Staschel R, Roloff A, Junk WJ (2003) Tree ring analysis reveals age structure, dynamics and wood production of a natural forest stand in Cameroon. For Ecol Manag 173:105–123. CrossRefGoogle Scholar
  75. Worbes M, Fichtler E (2010) Wood anatomy and tree-ring structure and their importance for tropical dendrochronology. In: Junk WJ et al Amazonian floodplain forests: ecophysiology, biodiversity and sustainable management, Springer, The Netherlands pp 329–346CrossRefGoogle Scholar
  76. Yamaguchi DK (1991) A simple method for cross-dating increment cores from living trees. Can J For Res 21:414–416. CrossRefGoogle Scholar
  77. Zobel B, Talbert J (1984) Applied forest tree improvement. Wiley, New YorkGoogle Scholar
  78. Zuidema PA, Brienen RJW, Schöngart J (2012) Tropical forest warming: looking backwards for more insights. Trends Ecol Evol 27:193–194. CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Dirceu Lucio C. de Miranda
    • 1
    • 2
  • Niro Higuchi
    • 1
  • Susan E. Trumbore
    • 4
  • João Vicente F. Latorraca
    • 3
  • Jair F. do Carmo
    • 2
  • Adriano J. N. Lima
    • 1
  1. 1.National Institute for Amazonian Research (INPA)ManausBrazil
  2. 2.Federal University of Mato Grosso (UFMT)SinopBrazil
  3. 3.Federal Rural University of Rio de Janeiro (UFRRJ)SeropédicaBrazil
  4. 4.Max-Planck Institute for BiogeochemistryJenaGermany

Personalised recommendations