, Volume 32, Issue 2, pp 371–381 | Cite as

Root growth of somatic plants of hybrid Pinus strobus (L.) and P. wallichiana (A. B. Jacks.) is affected by the nitrogen composition of the somatic embryo germination medium

  • M. T. Llebrés
  • C. Avila
  • F. M. Cánovas
  • K. KlimaszewskaEmail author
Original Article


Key message

This paper describes improvement in root growth of hybrid white pine somatic plants on a somatic embryo germination medium containing solely organic nitrogen sources.


Mature somatic embryos of F2 hybrid Pinus strobus × Pinus wallichiana backcrossed with P. strobus converted to plants but survival of the somatic plants was not satisfactory prompting the present study on somatic seedling root growth on germination media varying in nitrogen (N) composition. The media were modifications of Litvay’s (Litvay et al. in Plant Cell Rep 4:325–328, 1985) which included two main groups: G1, G2, G3, G4 all contained inorganic N with or without glutamine (Gln) or casein hydrolysate (CH) and G5, G6, G7 contained solely glutamine and/or CH. In addition, G8 was half-strength G1 (with organic N) and G9 was half-strength CD (Campbell and Durzan in Can J Bot 53:1652–1657, 1975) without organic N. The roots of plants growing on media containing solely organic N grew about 2.55 times longer than on those containing solely inorganic N or both inorganic and organic N. The longest roots grew on G7 supplemented with CH and on G5 with both CH and Gln. Microarray analysis of somatic plants germinated on G1 versus G7 revealed that depending on the N source the somatic plants displayed changes in the transcriptome resulting in the differential expression of a range of genes involved in essential processes for plant growth and development. Roots grown in the absence of inorganic N were capable of rapid uptake of labelled inorganic 15N during the 2 h incubation in the nutrient solution. The somatic plants from G5 medium acclimatized at the rate twice as high as those from G1 (with both inorganic and organic N) and G2 (solely inorganic N) under standard fertilization regime.


Eastern white pine Himalayan pine 15N uptake Root length Somatic embryogenesis Microarrays 



Somatic embryogenesis




Modified Litvay’s medium


and Durzan medium


Casein hydrolysate




White pine blister rust


Uridine diphosphate



This work was supported by Grants from the Spanish Ministerio de Economía y Competitividad (BIO2015-69285-R) and Junta de Andalucía (BIO-474) to M.T.L.L. We gratefully acknowledge the assistance of Dr. Javier Canales (University of Malaga) with microarray analysis, Mrs. Cathy Overton with the production of mature somatic embryos and acclimatization of somatic plants and Mrs. Michèle Bernier-Cardou for the statistical analyses (Natural Resources Canada, Canadian Forest Service).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

468_2017_1635_MOESM1_ESM.pptx (49 kb)
Fig. S1 Comparison between microarray and qPCR expression data to validate the microarray hybridizations. Closed bars correspond to Log2FC from microarray data and open bars to Log2FC from qPCR ones. Selected genes from P. pinaster (SustainPineDB) were: PpChS (chalcone synthase), PpEAP (embryo-abundant protein), Pp40sRP (40s ribosomal protein s19), Pp24kdP (24 kDa seed maturation protein), PpNADH (nadh:ubiquinone oxidoreductase family protein), PpPSII (photosystem ii 10 kDa chloroplast), PpChl (chlorophyll a b-binding protein), PpEF1β (elongation factor 1-beta), PpGS1a (glutamine synthetase 1a) and PpGS1b (glutamine synthetase 1b) (PPTX 48 KB)
468_2017_1635_MOESM2_ESM.docx (39 kb)
Supplementary material 2 (DOCX 39 KB)
468_2017_1635_MOESM3_ESM.xlsx (1.5 mb)
Table S6 Results of microarray analysis (XLSX 1518 KB)
468_2017_1635_MOESM4_ESM.xlsx (1.5 mb)
Table S7 List of primer sequences used for microarray validation (XLSX 1518 KB)


  1. Avila C, Suárez MF, Gómez-Maldonado J, Cánovas FM (2001) Spatial and temporal expression of two cytosolic glutamine synthetase genes in Scots pine: functional implications on nitrogen metabolism during early stages of conifer development. Plant J 25:93–102CrossRefPubMedGoogle Scholar
  2. Bauer GA, Berntson GM (2001) Ammonium and nitrate acquisition by plants in response to elevated CO2 concentration: the roles of root physiology and architecture. Tree Physiol 21:137–144CrossRefPubMedGoogle Scholar
  3. Bedell JP, Chalot M, Garnier A, Botton B (1999) Effects of nitrogen source on growth and activity of nitrogen-assimilating enzymes in Douglas-fir seedlings. Tree Physiol 19:205–210CrossRefPubMedGoogle Scholar
  4. Boggy GJ, Woolf PJ (2010) A mechanistic model of PCR for accurate quantification of quantitative PCR data. PLoS One 5(8):e12355CrossRefPubMedPubMedCentralGoogle Scholar
  5. Bown HE, Watt MS, Clinton PW, Mason EG (2010) Influence of ammonium and nitrate supply on growth, dry matter partitioning, N uptake and photosynthetic capacity of Pinus radiata seedlings. Trees 24:1097–1107CrossRefGoogle Scholar
  6. Brown H, Prescott R (2006) Applied mixed models in medicine, 2nd edn. Wiley, ChichesterCrossRefGoogle Scholar
  7. Campbell RA, Durzan DJ (1975) Induction of multiple buds and needles in tissue culture of Picea glauca. Can J Bot 53:1652–1657CrossRefGoogle Scholar
  8. Canales J, Avila C, Cantón FR, Pacheco-Villalobos D, Díaz-Moreno S, Ariza D, Molina-Rueda JJ, Navarro-Cerrillo RM, Gonzalo Claros MG, Cánovas FM (2012a) Gene expression profiling in the stem of young maritime pine trees: detection of ammonium stress-responsive genes in the apex. Trees 26:609–619CrossRefGoogle Scholar
  9. Canales J, Rueda-López M, Craven-Bartle B, Avila C, Cánovas FM (2012b) Novel insights into regulation of asparagine synthetase in conifers. Front Plant Sci 3:100CrossRefPubMedPubMedCentralGoogle Scholar
  10. Canales J, Bautista R, Label P et al (2014) De novo assembly of maritime pine transcriptome: implications for forest breeding and biotechnology. Plant Biotechnol J 12:286–299CrossRefPubMedGoogle Scholar
  11. Cañas RA, de la Torre F, Cánovas FM, Cantón FR (2006) High levels of asparagine synthetase in hypocotyls of pine seedlings suggest a role of the enzyme in re-allocation of seed-stored nitrogen. Planta 224:83–95CrossRefPubMedGoogle Scholar
  12. Cañas RA, Canales J, Muñoz-Hernández C, Granados JM, Ávila C, García-Martín ML, Cánovas FM (2015) Understanding developmental and adaptive cues in pine through metabolite profiling and co-expression network analysis. J Exp Bot 66:3113–3127CrossRefPubMedPubMedCentralGoogle Scholar
  13. Castro-Rodríguez V, Assaf-Casals I, Pérez-Tienda J, Fan X, Avila C, Miller A, Cánovas FM (2016) Deciphering the molecular basis of ammonium uptake and transport in maritime pine. Plant Cell Environ 39:1669–1682CrossRefPubMedGoogle Scholar
  14. Castro-Rodríguez V, Cañas RA, de la Torre FN, Pascual MB, Avila C, Cánovas FM (2017) Molecular fundamentals of nitrogen uptake and transport in trees. J Exp Bot 68:2489–2500CrossRefPubMedGoogle Scholar
  15. Chellamuthu VR, Ermilov E, Lapina T, Lüddecke J, Minaeva E, Herrmann C, Hartmann MD, Forchhammer KA (2014) Widespread glutamine-sensing mechanism in the plant kingdom. Cell 159:1188–1199CrossRefPubMedGoogle Scholar
  16. Daoust G, Klimaszewska K, Plourde D (2009) Somatic embryogenesis, a tool for accelerating the selection and deployment of hybrids of eastern white pine (Pinus strobus) and Himalayan white pine (Pinus wallichiana) resistant to white pine blister rust (Cronartium ribicola). In: Noshad D, Noh EW, King J, Sniezko RA (eds) Breeding and genetic resources of five-needle pines. In: Proceedings of the conference 2008, Yangyang, Korea. Korea Forest Research Institute, Seoul. ISBN:978-89-8176-605-4 (93520)Google Scholar
  17. Garin E, Bernier-Cardou M, Isabel N, Klimaszewska K, Plourde A (2000) Effect of sugars, amino acids, and culture technique on maturation of somatic embryos of Pinus strobus on medium with two gellan gum concentrations. Plant Cell Tissue Organ Cult 62:27–37CrossRefGoogle Scholar
  18. Graan T, Ort DR (1984) Quantitation of the rapid electron donors to P700, the functional plastoquinone pool, and the ratio of the photosystems in spinach chloroplasts. J Biol Chem 259:4003–14010Google Scholar
  19. Gruber BD, Giehl RFH, Friedel S, von Wiren N (2013) Plasticity of the Arabidopsis root system under nutrient deficiencies. Plant Physiol 163:161–179CrossRefPubMedPubMedCentralGoogle Scholar
  20. Hodge A, Berta G, Doussan C, Merchan F, Crespi M (2009) Plant root growth, architecture and function. Plant Soil 321:153–187CrossRefGoogle Scholar
  21. Kiba T, Krapp A (2016) Plant nitrogen acquisition under low availability: regulation of uptake and root architecture. Plant Cell Physiol 57:707–714CrossRefPubMedPubMedCentralGoogle Scholar
  22. Klimaszewska K, Bernier-Cardou M, Cyr DR, Sutton BCS (2000) Influence of gelling agents on culture medium gel strength, water availability, tissue water potential, and maturation response in embryogenic cultures of Pinus strobus L. Vitro Cell Dev Biol Plant 36:279–286CrossRefGoogle Scholar
  23. Klimaszewska K, Park Y-S, Overton C, Maceacheron I, Bonga JM (2001) Optimized somatic embryogenesis in Pinus strobus L. Vitro Cell Dev Biol Plant 37:392–399CrossRefGoogle Scholar
  24. Klimaszewska K, Morency F, Jones-Overton C, Cooke J (2004) Accumulation pattern and identification of seed storage proteins in zygotic embryos of Pinus strobus and in somatic embryos from different maturation treatments. Physiol Plant 121:682–690CrossRefGoogle Scholar
  25. Klimaszewska K, Hargreaves C, Lelu-Walter MA, Trontin JF (2016) Advances in conifer somatic embryogenesis since year 2000. In: Germanà MA, Lambardi M (eds) In vitro embryogenesis in higher plants. Humana Press, Hatfield, pp 131–166CrossRefGoogle Scholar
  26. Lima JE, Kojima S, Takahashi H, von Wirén N (2010) Ammonium triggers lateral root branching in Arabidopsis in an AMMONIUM TRANSPORTER1;3-dependent manner. Plant Cell 22:3621–3633CrossRefPubMedPubMedCentralGoogle Scholar
  27. Linkohr BI, Williamson LC, Fitter AH, Leyser O (2002) Nitrate and phosphate availability and distribution have different effects on root system architecture of Arabidopsis. Plant J 29:751–760CrossRefPubMedGoogle Scholar
  28. Litvay JD, Verma DC, Johnson MA (1985) Influence of a loblolly pine (Pinus taeda L.) culture medium and its components on growth and somatic embryogenesis of the wild carrot (Daucus carota L.). Plant Cell Rep 4:325–328CrossRefPubMedGoogle Scholar
  29. Milliken GA, Johnson DE (2009) Analysis of messy data, Volume 1, Designed experiments, 2nd edn. CRC Press, Boca RatonCrossRefGoogle Scholar
  30. Näsholm T, Kielland K, Ganeteg U (2009) Uptake of organic nitrogen by plants. New Phytol 182:31–48CrossRefPubMedGoogle Scholar
  31. Öhlund J, Näsholm T (2001) Growth of conifer seedlings on organic and inorganic nitrogen sources. Tree Physiol 21:1319–1326CrossRefPubMedGoogle Scholar
  32. Öhlund J, Näsholm T (2004) Regulation of organic and inorganic nitrogen uptake in Scots pine (Pinus sylvestris) seedlings. Tree Physiol 24:1397–1402CrossRefPubMedGoogle Scholar
  33. Percy RE, Klimaszewska K, Cyr DR (2000) Evaluation of somatic embryogenesis for clonal propagation of western white pine. Can J For Res 30:1867–1876CrossRefGoogle Scholar
  34. Ritz C, Spiess AN (2008) qpcR: an R package for sigmoidal model selection in quantitative real-time polymerase chain reaction analysis. Bioinformatics 24:1549–1551CrossRefPubMedGoogle Scholar
  35. Van Zyl L, von Arnold S, Chen Y, Egertsdotter U, Mackay J, Sederoff R, Shen J, Zelena L, Clapham DH (2002) Heterologous array analysis in Pinaceae: hybridization of Pinus taeda cDNA arrays with cDNA from needles and embryogenic cultures of P. taeda, P. sylvestris or Picea abies. Comp Funct Genom 3:306–318CrossRefGoogle Scholar
  36. Wei H, Yordanov YS, Georgieva T, Li X, Busov V (2013) Nitrogen deprivation promotes Populus root growth through global transcriptome reprogramming and activation of hierarchical genetic networks. New Phytol 200:483–497CrossRefPubMedGoogle Scholar
  37. Westfall P, Tobias RD, Rom D, Wolfinger RD, Hochberg RD (1999) Multiple comparisons and multiple tests using the SAS system. SAS Institute Inc., CaryGoogle Scholar

Copyright information

© Crown Copyright  2017

Authors and Affiliations

  1. 1.Departamento de Biología Molecular y Bioquímica, Facultad de Ciencias, Campus Universitario de TeatinosUniversidad de MálagaMálagaSpain
  2. 2.Natural Resources Canada, Canadian Forest ServiceLaurentian Forestry CentreQuebecCanada

Personalised recommendations