Advertisement

Trees

, Volume 31, Issue 4, pp 1113–1125 | Cite as

Genomics of sex determination in dioecious trees and woody plants

  • Birgit Kersten
  • Birte Pakull
  • Matthias Fladung
Review

Abstract

Key message

This review gives a comprehensive overview on the genomics of sex determination in dioecious woody plants and plants with a tree-like habitus, in particular considering species where sex-linked regions and/or markers have been identified.

Abstract

Dioecious plant species are characterized by unisexual flowers located on separate male or female individuals. While only about 5–6% of angiosperm species are reported to be dioecious, tree species seem to show a higher percentage of dioecy. Generally, it is presumed that various different genetic and developmental mechanisms underlie unisexuality in different dioecious species. This review focusses on the genomics of sex determination in dioecious woody plant species like trees, shrubs and vines as well as other plant species with a tree-like habitus like papaya and the monocot date palm. Findings for different tree species, including Diospyros lotus and members of the Salicaceae family, are summarized including information on sex-linked markers that enable to identify the sex of a tree before the tree reaches sexual maturity.

Keywords

Diospyros lotus Carica papaya Populus Aspen Salicaceae Sex-linked markers 

Notes

Acknowledgements

We thank Cristina Vettori for sequencing the P. tremuloides BAC clone, as mentioned in the manuscript. Dina Führmann is acknowledged for language editing.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. Adam H, Collin M, Richaud F, Beulé T, Cros D, Omoré A, Nodichao L, Nouy B et al (2011) Environmental regulation of sex determination in oil palm: current knowledge and insights from other species. Ann Bot 108(8):1529–1537. doi: 10.1093/aob/mcr151 PubMedPubMedCentralCrossRefGoogle Scholar
  2. Akagi T, Henry IM, Tao R, Comai L (2014) A Y-chromosome-encoded small RNA acts as a sex determinant in persimmons. Science 346:646–650. doi: 10.1126/science.1257225 PubMedCrossRefGoogle Scholar
  3. Al-Dous EK, George B, Al-Mahmoud ME, Al-Jaber MY, Wang H, Salameh YM, Al-Azwani EK, Chaluvadi S et al (2011) De novo genome sequencing and comparative genomics of date palm (Phoenix dactylifera). Nat Biotechnol 29:521–527. doi: 10.1038/nbt.1860 PubMedCrossRefGoogle Scholar
  4. Al-Mahmoud ME, Al-Dous EK, Al-Azwani EK, Malek JA (2012) DNA-based assays to distinguish date palm (Arecaceae) gender. Am J Bot 99:E7–E10. doi: 10.3732/ajb.1100425 PubMedCrossRefGoogle Scholar
  5. Aryal R, Ming R (2014) Sex determination in flowering plants: papaya as a model system. Plant Sci 217–218:56–62. doi: 10.1016/j.plantsci.2013.10.018 PubMedCrossRefGoogle Scholar
  6. Bachtrog D (2006) A dynamic view of sex chromosome evolution. Curr Opin Genet Dev 16:578–585. doi: 10.1016/j.gde.2006.10.007 PubMedCrossRefGoogle Scholar
  7. Bawa KS, Perry DR, Beach JH (1985) Reproductive biology of tropical lowland rain forest trees. I. Sexual systems and incompatibility mechanisms. Am J Bot 72:331–345. doi: 10.2307/2443526 CrossRefGoogle Scholar
  8. Boes TK, Strauss SH (1994) Floral phenology and morphology of black-cottonwood, Populus trichocarpa (Salicaceae). Am J Bot 81:562–567. doi: 10.2307/2445730 CrossRefGoogle Scholar
  9. Boualem A, Troadec C, Camps C, Lemhemdi A, Morin H, Sari MA, Fraenkel-Zagouri R, Kovalski I et al (2015) A cucurbit androecy gene reveals how unisexual flowers develop and dioecy emerges. Science 350(6261):688–691. doi: 10.1126/science.aac8370 PubMedCrossRefGoogle Scholar
  10. Brunner AM (2010) Reproductive development and sex determination. In: Jansson S, Bhalerao RP, Groover AT (eds) Genetics and genomics of Populus. Springer Science and Business Media, Heidelberg, pp 155–170CrossRefGoogle Scholar
  11. Caseys C, Stölting KN, Barbará T, González-Martínez SC, Lexer C (2015) Patterns of genetic diversity and differentiation in resistance gene clusters of two hybridizing European Populus species. Tree Genet Genomes 11:81. doi: 10.1007/s11295-015-0904-8 CrossRefGoogle Scholar
  12. Charlesworth D (2002) Plant sex determination and sex chromosomes. Heredity (Edinb) 88:94–101. doi: 10.1038/sj.hdy.6800016 CrossRefGoogle Scholar
  13. Charlesworth D (2013) Plant sex chromosome evolution. J Exp Bot 64:405–420. doi: 10.1093/Jxb/Ers322 PubMedCrossRefGoogle Scholar
  14. Charlesworth D (2015) Plant contributions to our understanding of sex chromosome evolution. New Phytol 208:52–65. doi: 10.1111/nph.13497 PubMedCrossRefGoogle Scholar
  15. Charlesworth D (2016) Plant sex chromosomes. Ann Review Plant Biol 67:397–420. doi: 10.1146/annurev-arplant-043015-111911 CrossRefGoogle Scholar
  16. Charlesworth B, Charlesworth D (1978) Model for evolution of dioecy and gynodioecy. Am Nat 112:975–997. doi: 10.1086/283342 CrossRefGoogle Scholar
  17. Chen YA, Wang TT, Fang LC, Li XP, Yin TM (2016) Confirmation of single-locus sex determination and female heterogamety in willow based on linkage analysis. PLoS One 11:e0147671. doi: 10.1371/journal.pone.0147671 PubMedPubMedCentralCrossRefGoogle Scholar
  18. Cherif E, Zehdi S, Castillo K, Chabrillange N, Abdoulkader S, Pintaud JC, Santoni S, Salhi-Hannachi A et al (2013) Male-specific DNA markers provide genetic evidence of an XY chromosome system, a recombination arrest and allow the tracing of paternal lineages in date palm. New Phytol 197:409–415. doi: 10.1111/nph.12069 PubMedCrossRefGoogle Scholar
  19. Cherif E, Zehdi-Azouzi S, Crabos A, Castillo K, Chabrillange N, Pintaud JC, Amel SH, Glemin S et al (2016) Evolution of sex chromosomes prior to speciation in the dioecious Phoenix species. J Evol Biol 29(8):1513–1522. doi: 10.1111/jeb.12887 PubMedCrossRefGoogle Scholar
  20. Coder KD (2008) Tree sex: Gender & reproductive strategies. http://www.urbanforestrysouth.org/resources/library/citations/tree-sex-gender-reproductive-strategies. Accessed 12 Oct 2016
  21. Dai XG, Hu QJ, Cai QL, Feng K, Ye N, Tuskan GA, Milne R, Chen YN et al (2014) The willow genome and divergent evolution from poplar after the common genome duplication. Cell Res 24:1274–1277. doi: 10.1038/cr.2014.83 PubMedPubMedCentralCrossRefGoogle Scholar
  22. Dalbo MA, Ye GN, Weeden NF, Steinkellner H, Sefc KM, Reisch BI (2000) A gene controlling sex in grapevines placed on a molecular marker-based genetic map. Genome 43:333–340. doi: 10.1139/Gen-43-2-333 PubMedCrossRefGoogle Scholar
  23. Díaz-Castillo C, Golic KG (2007) Evolution of gene sequence in response to chromosomal location. Genetics 177(1):359–374. doi: 10.1534/genetics.107.077081 PubMedPubMedCentralCrossRefGoogle Scholar
  24. Diggle PK, Di Stilio VS, Gschwend AR, Golenberg EM, Moore RC, Russell JR, Sinclair JP (2011) Multiple developmental processes underlie sex differentiation in angiosperms. Trends Genet 27:368–376. doi: 10.1016/j.tig.2011.05.003 PubMedCrossRefGoogle Scholar
  25. Fechter I, Hausmann L, Daum M, Sorensen TR, Viehover P, Weisshaar B, Topfer R (2012) Candidate genes within a 143 kb region of the flower sex locus in Vitis. Mol Genet Genom 287:247–259. doi: 10.1007/s00438-012-0674-z CrossRefGoogle Scholar
  26. Filatov DA (2015) Homomorphic plant sex chromosomes are coming of age. Mol Ecol 24:3217–3219. doi: 10.1111/mec.13268 PubMedCrossRefGoogle Scholar
  27. Fraser LG, Tsang GK, Datson PM, De Silva HN, Harvey CF, Gill GP, Crowhurst RN, McNeilage MA (2009) A gene-rich linkage map in the dioecious species Actinidia chinensis (kiwifruit) reveals putative X/Y sex-determining chromosomes. BMC Genom 10:102. doi: 10.1186/1471-2164-10-102 CrossRefGoogle Scholar
  28. Freeman DC, Klikoff LG, Harper KT (1976) Differential resource utilization by the sexes of dioecious plants. Science 193(4253):597–599. doi: 10.1126/science.193.4253.597 PubMedCrossRefGoogle Scholar
  29. Freeman DC, Harper KT, Charnov EL (1980) Sex change in plants: old and new observations and new hypotheses. Oecologia 47(2):222–232. doi: 10.1007/BF00346825 PubMedCrossRefGoogle Scholar
  30. Gaudet M, Jorge V, Paolucci I, Beritognolo I, Scarascia Mugnozza G, Sabatti M (2008) Genetic linkage maps of Populus nigra L. including AFLPs, SSRs, SNPs, and sex trait. Tree Genet Genomes 4:25–36. doi: 10.1007/s11295-007-0085-1 CrossRefGoogle Scholar
  31. Geraldes A, Hefer CA, Capron A, Kolosova N, Martinez-Nunez F, Soolanayakanahally RY, Stanton B, Guy RD et al (2015) Recent Y chromosome divergence despite ancient origin of dioecy in poplars (Populus). Mol Ecol 24:3243–3256. doi: 10.1111/mec.13126 PubMedCrossRefGoogle Scholar
  32. Grant S, Houben A, Vyskot B, Siroky J, Pan WH, Macas J, Saedler H et al (1994) Genetics of sex determination in flowering plants. Dev Genet 15:214–230. doi: 10.1002/dvg.1020150304 CrossRefGoogle Scholar
  33. Graves JA (2013) How to evolve new vertebrate sex determining genes. Dev Dyn 242(4):354–359. doi: 10.1002/dvdy.23887 PubMedCrossRefGoogle Scholar
  34. Griffith ME, Mayer U, Capron A, Ngo QA, Surendrarao A, McClinton R, Jurgens G, Sundaresan V (2007) The TORMOZ gene encodes a nucleolar protein required for regulated division planes and embryo development in Arabidopsis. Plant Cell 19:2246–2263. doi: 10.1105/tpc.106.042697 PubMedPubMedCentralCrossRefGoogle Scholar
  35. Hoenicka H, Lehnhardt D, Briones V, Nilsson O, Fladung M (2016) Low temperatures are required to induce the development of fertile flowers in transgenic male and female early flowering poplar (Populus tremula L.). Tree Physiol 36:667–677. doi: 10.1093/treephys/tpw015 PubMedPubMedCentralCrossRefGoogle Scholar
  36. Hou J, Ye N, Zhang DF, Chen YN, Fang LC, Dai XG, Yin TM (2015) Different autosomes evolved into sex chromosomes in the sister genera of Salix and Populus. Sci Rep 5:9076. doi: 10.1038/Srep09076 PubMedPubMedCentralCrossRefGoogle Scholar
  37. Huang S, Ding J, Deng D, Tang W, Sun H, Liu D, Zhang L, Niu X et al (2013) Draft genome of the kiwifruit Actinidia chinensis. Nat Commun 4:2640. doi: 10.1038/ncomms3640 PubMedPubMedCentralGoogle Scholar
  38. Iovene M, Yu QY, Ming R, Jiang JM (2015) Evidence for emergence of sex-determining gene(s) in a centromeric region in Vasconcellea parviflora. Genetics 199:413–421. doi: 10.1534/genetics.114.173021 PubMedCrossRefGoogle Scholar
  39. Jaillon O, Aury JM, Noel B, Policriti A, Clepet C, Casagrande A, Choisne N, Aubourg S et al (2007) The grapevine genome sequence suggests ancestral hexaploidization in major angiosperm phyla. Nature 449:463–465. doi: 10.1038/nature06148 PubMedCrossRefGoogle Scholar
  40. Jaligot E, Adler S, Debladis E, Beule T, Richaud F, Ilbert P, Finnegan EJ, Rival A (2011) Epigenetic imbalance and the floral developmental abnormality of the in vitro-regenerated oil palm Elaeis guineensis. Ann Bot 108:1453–1462. doi: 10.1093/aob/mcq266 PubMedPubMedCentralCrossRefGoogle Scholar
  41. Jamilena M, Mariotti B, Manzano S (2008) Plant sex chromosomes: molecular structure and function. Cytogenet Genome Res 120:255–264. doi: 10.1159/000121075 PubMedCrossRefGoogle Scholar
  42. Janousek B, Siroky J, Vyskot B (1996) Epigenetic control of sexual phenotype in a dioecious plant, Melandrium album. Mol Gen Genet 250:483–490PubMedCrossRefGoogle Scholar
  43. Janousek B, Hobza R, Vyskot B (2013) Chromosomes and sex differentiation. In: Leitch IJ, Greilhuber J, Dolezel J, Wendel J (eds) Plant genome diversity, vol 2. Springer-Verlag, Wien, pp 167–186CrossRefGoogle Scholar
  44. Jia HM, Jiao Y, Wang GY, Li YH, Jia HJ, Wu HX, Chai CY, Dong X et al (2015) Genetic diversity of male and female Chinese bayberry (Myrica rubra) populations and identification of sex-associated markers. BMC Genom 16:394. doi: 10.1186/S12864-015-1602-5 CrossRefGoogle Scholar
  45. Kafkas S, Khodaeiaminjan M, Guney M, Kafkas E (2015) Identification of sex-linked SNP markers using RAD sequencing suggests ZW/ZZ sex determination in Pistacia vera L. BMC Genom 16:98. doi: 10.1186/s12864-015-1326-6 CrossRefGoogle Scholar
  46. Kejnovsky E, Vyskot B (2010) Silene latifolia: the classical model to study heteromorphic sex chromosomes. Cytogenet Genome Res 129:250–262. doi: 10.1159/000314285 PubMedCrossRefGoogle Scholar
  47. Kejnovsky E, Hobza R, Cermak T, Kubat Z, Vyskot B (2009) The role of repetitive DNA in structure and evolution of sex chromosomes in plants. Heredity 102:533–541. doi: 10.1038/hdy.2009.17 PubMedCrossRefGoogle Scholar
  48. Kersten B, Pakull B, Fladung M (2012) Mapping of the sex trait and sequence analysis of two linked genomic regions in Populus tremuloides. ScienceMed 3:203–210Google Scholar
  49. Kersten B, Pakull B, Groppe K, Lueneburg J, Fladung M (2014) The sex-linked region in Populus tremuloides Turesson 141 corresponds to a pericentromeric region of about 2 million bp on Populus trichocarpa chromosome 19. Plant Biol (Stuttg) 16(2):411–418. doi: 10.1111/plb.12048 CrossRefGoogle Scholar
  50. Litrico I, Pailler T, Thompson JD (2005) Gender variation and primary succession in a tropical woody plant, Antirhea borbonica (Rubiaceae). J Ecol 93:705–715. doi: 10.1111/j.1365-2745.2005.01009.x CrossRefGoogle Scholar
  51. Liu Z, Moore PH, Ma H, Ackerman CM, Ragiba M, Yu Q, Pearl HM, Kim MS et al (2004) A primitive Y chromosome in papaya marks incipient sex chromosome evolution. Nature 427:348–352. doi: 10.1038/nature02228 PubMedCrossRefGoogle Scholar
  52. Lowe KM, Walker MA (2006) Genetic linkage map of the interspecific grape rootstock cross Ramsey (Vitis champinii) x Riparia Gloire (Vitis riparia). Theor Appl Genet 112:1582–1592. doi: 10.1007/s00122-006-0264-8 PubMedCrossRefGoogle Scholar
  53. Ma WJ, Pannell JR (2016) Sex determination: separate sexes are a double turnoff in melons. Curr Biol 26(4):R171–R174. doi: 10.1016/j.cub.2015.12.026 PubMedCrossRefGoogle Scholar
  54. Maki M (2009) Development of SCAR markers for sex determination in the dioecious shrub Aucuba japonica (Cornaceae). Genome 52:231–237. doi: 10.1139/G08-120 PubMedCrossRefGoogle Scholar
  55. Marguerit E, Boury C, Manicki A, Donnart M, Butterlin G, Nemorin A, Wiedemann-Merdinoglu S, Merdinoglu D et al (2009) Genetic dissection of sex determinism, inflorescence morphology and downy mildew resistance in grapevine. Theor Appl Genet 118:1261–1278. doi: 10.1007/s00122-009-0979-4 PubMedCrossRefGoogle Scholar
  56. Martin A, Troadec C, Boualem A, Rajab M, Fernandez R, Morin H, Pitrat M, Dogimont C et al (2009) A transposon-induced epigenetic change leads to sex determination in melon. Nature 461:1135–1138. doi: 10.1038/nature08498 PubMedCrossRefGoogle Scholar
  57. Matallana G, Wendt T, Araujo DSD, Scarano FR (2005) High abundance of dioecious plants in a tropical coastal vegetation. Am J Bot 92:1513–1519. doi: 10.3732/ajb.92.9.1513 PubMedCrossRefGoogle Scholar
  58. Mathew LS, Spannagl M, Al-Malki A, George B, Torres MF, Al-Dous EK, Al-Azwani EK, Hussein E et al (2014) A first genetic map of date palm (Phoenix dactylifera) reveals long-range genome structure conservation in the palms. BMC Genom 15:285. doi: 10.1186/1471-2164-15-285 CrossRefGoogle Scholar
  59. Michalovova M, Kubat Z, Hobza R, Vyskot B, Kejnovsky E (2015) Fully automated pipeline for detection of sex linked genes using RNA-Seq data. BMC Bioinf 16:78. doi: 10.1186/s12859-015-0509-0 CrossRefGoogle Scholar
  60. Ming R, Moore PH (2007) Genomics of sex chromosomes. Curr Opin Plant Biol 10:123–130. doi: 10.1016/j.pbi.2007.01.013 PubMedCrossRefGoogle Scholar
  61. Ming R, Hou S, Feng Y, Yu Q, Dionne-Laporte A et al (2008) The draft genome of the transgenic tropical fruit tree papaya (Carica papaya Linnaeus). Nature 452:991–996. doi: 10.1038/nature06856 PubMedPubMedCentralCrossRefGoogle Scholar
  62. Ming R, Bendahmane A, Renner SS (2011) Sex chromosomes in land plants. Annu Rev Plant Biol 62:485–514. doi: 10.1146/annurev-arplant-042110-103914 PubMedCrossRefGoogle Scholar
  63. Negrutiu I, Vyskot B, Barbacar N, Georgiev S, Moneger F (2001) Dioecious plants. A key to the early events of sex chromosome evolution. Plant Physiol 127:1418–1424. doi: 10.1104/pp.010711 PubMedPubMedCentralCrossRefGoogle Scholar
  64. Németh AV, Dudits D, Molnár-Láng M, Linc G (2013) Molecular cytogenetic characterisation of Salix viminalis L. using repetitive DNA sequences. J Appl Genet 54(3):265–269. doi: 10.1007/s13353-013-0153-1 PubMedCrossRefGoogle Scholar
  65. Pakull B, Groppe K, Meyer M, Markussen T, Fladung M (2009) Genetic linkage mapping in aspen (Populus tremula L. and Populus tremuloides Michx.). Tree Genet Genomes 5:505–515. doi: 10.1007/s11295-009-0204-2 CrossRefGoogle Scholar
  66. Pakull B, Groppe K, Mecucci F, Gaudet M, Sabatti M, Fladung M (2011) Genetic mapping of linkage group XIX and identification of sex-linked SSR markers in a Populus tremula x Populus tremuloides cross. Can J For Res 41:245–253. doi: 10.1139/X10-206 CrossRefGoogle Scholar
  67. Pakull B, Kersten B, Luneburg J, Fladung M (2015) A simple PCR-based marker to determine sex in aspen. Plant Biol (Stuttg) 17(1):256–261. doi: 10.1111/plb.12217 CrossRefGoogle Scholar
  68. Pandey RS, Azad RK (2016) Deciphering evolutionary strata on plant sex chromosomes and fungal mating-type chromosomes through compositional segmentation. Plant Mol Biol 90(4–5):359–373. doi: 10.1007/s11103-015-0422-y PubMedCrossRefGoogle Scholar
  69. Pannell J (1997) Mixed genetic and environmental sex determination in an androdioecious population of Mercurialis annua. Heredity 78:50–56. doi: 10.1038/hdy.1997.6 PubMedCrossRefGoogle Scholar
  70. Paolucci I, Gaudet M, Jorge V, Beritognolo I, Terzoli S, Kuzminsky E, Muleo R, Scarascia Mugnozza G et al. (2010) Genetic linkage maps of Populus alba L. and comparative mapping analysis of sex determination across Populus species. Tree Genet Genomes 6:863–875. doi: 10.1007/s11295-010-0297-7 CrossRefGoogle Scholar
  71. Papadopulos AST, Chester M, Ridout K, Filatov DA (2015) Rapid Y degeneration and dosage compensation in plant sex chromosomes. Proc Natl Acad Sci USA 112:13021–13026. doi: 10.1073/pnas.1508454112 PubMedPubMedCentralCrossRefGoogle Scholar
  72. Picq S, Santoni S, Lacombe T, Latreille M, Weber A, Ardisson M, Ivorra S, Maghradze D et al (2014) A small XY chromosomal region explains sex determination in wild dioecious V. vinifera and the reversal to hermaphroditism in domesticated grapevines. BMC Plant Biol 14:229. doi: 10.1186/S12870-014-0229-Z PubMedPubMedCentralCrossRefGoogle Scholar
  73. Policansky D (1981) Sex choice and the size advantage model in Jack-in-the-Pulpit (Arisaema triphyllum). Proc Natl Acad Sci Biol 78:1306–1308. doi: 10.1073/pnas.78.2.1306 CrossRefGoogle Scholar
  74. Pucholt P, Ronnberg-Wastljung AC, Berlin S (2015) Single locus sex determination and female heterogamety in the basket willow (Salix viminalis L.). Heredity 114:575–583. doi: 10.1038/hdy.2014.125 PubMedPubMedCentralCrossRefGoogle Scholar
  75. Renner SS (2014) The relative and absolute frequencies of angiosperm sexual systems: dioecy, monoecy, gynodioecy, and an updated online database. Am J Bot 101:1588–1596. doi: 10.3732/ajb.1400196 PubMedCrossRefGoogle Scholar
  76. Renner SS (2016) Pathways for making unisexual flowers and unisexual plants: Moving beyond the “two mutations linked on one chromosome” model. Am J Bot 103:587–589. doi: 10.3732/ajb.1600029 PubMedCrossRefGoogle Scholar
  77. Renner SS, Ricklefs RE (1995) Dioecy and its correlates in the flowering plants. Am J Bot 82:596–606. doi: 10.2307/2445418 CrossRefGoogle Scholar
  78. Riaz S, Krivanek AF, Xu K, Walker MA (2006) Refined mapping of the Pierce’s disease resistance locus, PdR1, and Sex on an extended genetic map of Vitis rupestris x V. arizonica. Theor Appl Genet 113:1317–1329. doi: 10.1007/s00122-006-0385-0 PubMedCrossRefGoogle Scholar
  79. Robinson KM, Delhomme N, Mahler N, Schiffthaler B, Onskog J, Albrectsen BR, Ingvarsson PK, Hvidsten TR et al (2014) Populus tremula (European aspen) shows no evidence of sexual dimorphism. BMC Plant Biol 14:276. doi: 10.1186/S12870-014-0276-5 PubMedPubMedCentralCrossRefGoogle Scholar
  80. Slavov GT, Zhelev P (2010) Salient biological features, systematics, and genetic variation of Populus. In: Jansson S, Bhalerao R, Groover A (eds) Genetics and genomics of Populus, plant genetics and genomics: crops and models, vol 8. Springer, Berlin, pp 15–38CrossRefGoogle Scholar
  81. Sola-Campoy PJ, Robles F, Schwarzacher T, Rejon CR, de la Herran R, Navajas-Perez R (2015) The molecular cytogenetic characterization of Pistachio (Pistacia vera L.) suggests the arrest of recombination in the largest heteropycnotic pair HC1. PLoS One 10:e0143861. doi: 10.1371/journal.pone.0143861 PubMedPubMedCentralCrossRefGoogle Scholar
  82. Song YP, Ma KF, Bo WH, Zhang ZY, Zhang DQ (2012) Sex-specific DNA methylation and gene expression in andromonoecious poplar. Plant Cell Rep 31:1393–1405. doi: 10.1007/s00299-012-1255-7 PubMedCrossRefGoogle Scholar
  83. Song YP, Ma KF, Ci D, Chen QQ, Tian JX, Zhang DQ (2013a) Sexual dimorphic floral development in dioecious plants revealed by transcriptome, phytohormone, and DNA methylation analysis in Populus tomentosa. Plant Mol Biol 83:559–576. doi: 10.1007/s11103-013-0108-2 PubMedCrossRefGoogle Scholar
  84. Song YP, Ma KF, Ci D, Zhang ZY, Zhang DQ (2013b) Sexual dimorphism floral microRNA profiling and target gene expression in andromonoecious poplar (Populus tomentosa). PLoS One 8:e62681. doi: 10.1371/journal.pone.0062681 PubMedPubMedCentralCrossRefGoogle Scholar
  85. Song YP, Tian M, Ci D, Zhang DQ (2015) Methylation of microRNA genes regulates gene expression in bisexual flower development in andromonoecious poplar. J Exp Bot 66:1891–1905. doi: 10.1093/jxb/eru531 PubMedPubMedCentralCrossRefGoogle Scholar
  86. Spigler RB, Lewers KS, Main DS, Ashman TL (2008) Genetic mapping of sex determination in a wild strawberry, Fragaria virginiana, reveals earliest form of sex chromosome. Heredity (Edinb) 101:507–517. doi: 10.1038/hdy.2008.100 CrossRefGoogle Scholar
  87. Spigler RB, Lewers KS, Johnson AL, Ashman TL (2010) Comparative mapping reveals autosomal origin of sex chromosome in octoploid Fragaria virginiana. J Hered 101:S107–S117. doi: 10.1093/jhered/esq001 CrossRefPubMedGoogle Scholar
  88. Tree of Sex Consortium (2014) Tree of Sex: a database of sexual systems. Sci Data 1:140015. doi: 10.1038/sdata.2014.15 Google Scholar
  89. Tuskan GA, DiFazio S, Jansson S, Bohlmann J, Grigoriev I, Hellsten U, Putnam N, Ralph S et al (2006) The genome of black cottonwood, Populus trichocarpa (Torr. & Gray). Science 313:1596–1604. doi: 10.1126/science.1128691 PubMedCrossRefGoogle Scholar
  90. Tuskan GA, DiFazio S, Faivre-Rampant P, Gaudet M, Harfouche A, Jorge V, Labbé JL, Ranjan P et al. (2012) The obscure events contributing to the evolution of an incipient sex chromosome in Populus: a retrospective working hypothesis. Tree Genet Genomes 8:559–571. doi: 10.1007/s11295-012-0495-6 CrossRefGoogle Scholar
  91. Vining KJ, Pomraning KR, Wilhelm LJ, Priest HD, Pellegrini M, Mockler TC, Freitag M, Strauss SH (2012) Dynamic DNA cytosine methylation in the Populus trichocarpa genome: tissue-level variation and relationship to gene expression. BMC Genom 13:27. doi: 10.1186/1471-2164-13-27 CrossRefGoogle Scholar
  92. Vyskot B, Hobza R (2015) The genomics of plant sex chromosomes. Plant Sci 236:126–135. doi: 10.1016/j.plantsci.2015.03.019 PubMedCrossRefGoogle Scholar
  93. Wang JP, Na JK, Yu QY, Gschwend AR, Han J, Zeng FC, Aryal R, VanBuren R et al (2012) Sequencing papaya X and Yh chromosomes reveals molecular basis of incipient sex chromosome evolution. Proc Natl Acad Sci USA 109:13710–13715. doi: 10.1073/pnas.1207833109 PubMedPubMedCentralCrossRefGoogle Scholar
  94. Wang SH, Li Y, Li ZQ, Chang L, Li L (2015) Identification of an SCAR marker related to female phenotype in Idesia polycarpa Maxim. Genet Mol Res 14:2015–2022. doi: 10.4238/2015.March.20.11 PubMedCrossRefGoogle Scholar
  95. Westergaard M (1958) The mechanism of sex determination in dioecious flowering plants. Adv Genet 9:217–281. doi: 10.1016/S0065-2660(08)60163-7 PubMedGoogle Scholar
  96. Wright AE, Dean R, Zimmer F, Mank JE (2016) How to make a sex chromosome. Nat Commun 7:12087. doi: 10.1038/ncomms12087 PubMedPubMedCentralCrossRefGoogle Scholar
  97. Wu Q, Chen Y, Wang Y, Lin L (2015) Sex differential marker FD for rapid sex identification of Litsea cubeba. Genet Mol Res 14:12820–12827. doi: 10.4238/2015.October.21.1 PubMedCrossRefGoogle Scholar
  98. Yampolsky C, Yampolsky H (1922) Distribution of the sex forms in the phanerogamic flora. Bibl Genet 3:1–62Google Scholar
  99. Yin T, Difazio SP, Gunter LE, Zhang X, Sewell MM, Woolbright SA, Allan GJ, Kelleher CT et al (2008) Genome structure and emerging evidence of an incipient sex chromosome in Populus. Genome Res 18:422–430. doi: 10.1101/gr.7076308 PubMedPubMedCentralCrossRefGoogle Scholar
  100. Zhang W, Wang X, Yu Q, Ming R, Jiang J (2008) DNA methylation and heterochromatinization in the male-specific region of the primitive Y chromosome of papaya. Genome Res 18:1938–1943. doi: 10.1101/gr.078808.108 PubMedPubMedCentralCrossRefGoogle Scholar
  101. Zhang J, Boualem A, Bendahmane A, Ming R (2014) Genomics of sex determination. Curr Opin Plant Biol 18:110–116. doi: 10.1016/j.pbi.2014.02.012 PubMedCrossRefGoogle Scholar
  102. Zhang Q, Liu CY, Liu YF, VanBuren R, Yao XH, Zhong CH, Huang HW (2015) High-density interspecific genetic maps of kiwifruit and the identification of sex-specific markers. DNA Res 22:367–375. doi: 10.1093/dnares/dsv019 PubMedPubMedCentralCrossRefGoogle Scholar
  103. Zimmerman JK (1991) Ecological correlates of labile sex expression in the orchid Catasetum viridiflavum. Ecology 72:597–608. doi: 10.2307/2937200 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  1. 1.Thünen Institute of Forest Genetics, Genome ResearchGrosshansdorfGermany

Personalised recommendations