Advertisement

Trees

, Volume 31, Issue 1, pp 125–135 | Cite as

Role of the outer stomatal ledges in the mechanics of guard cell movements

  • Anatoly Pautov
  • Svetlana Bauer
  • Olga Ivanova
  • Elena Krylova
  • Yulia Sapach
  • Galina Gussarova
Original Article

Abstract

Key Message

The modelling showed that outer ledges prevent wide opening of the stomatal pore and its lifting above leaf epidermis. This stomatal mechanics is combined with xeromorphic features of leaf epidermis.

Abstract

Methods of light, scanning, and transmission electron microscopy were used to study the stomata of the leaf epidermis in evergreen Acokanthera oblongifolia (Apocynaceae), A. oppositifolia (Apocynaceae), Carissa spectabilis (Apocynaceae), Exbucklandia populnea (Hamamelidaceae), and Trochodendron aralioides (Trochodendraceae). The stomata of their leaf epidermis are located on subsidiary cells, have large outer ledges, and lack inner ledges. To elucidate the role of the ledges, we applied dynamic modelling using the finite-element method. The application of dynamic modelling has shown that outer ledges prevent wide opening of the stomatal pore and their rising above the surface of leaf epidermis. The results of the modelling are supported by the observed deformations in the guard cells of the real stomata. This stomatal mechanics is combined with such stomatal xeromorphic features as thick cuticle, stomatal cavities, and waxy plugs (in A. oblongifolia). All studied species show similar leaf anatomy. It has much in common with the leaf anatomy of species connected in their origin with subhumid Tertiary laurophyllous forests.

Keywords

Stoma Subsidiary cells Stomatal ledges Outer cavity Stomatal mechanics Adaptation 

Notes

Acknowledgments

The study was carried out using laboratory facilities of the Research Resource Centres for molecular and cell technologies of St Petersburg State University and Komarov Botanical Institute RAS. We thank curators of the Komarov Botanical Gardens Irina Korshunova and Olga Anisimova for providing leaf material of the studied species.

Compliance with ethical standards

Conflict of interests

The authors declare that they have no conflict of interest.

References

  1. Axelrod DI (1975) Evolution and biogeography of madrean-tethyan sclerophyll vegetation. Ann Mo Bot Gard 62:280–334CrossRefGoogle Scholar
  2. Aylor DE, Parlange J-Y, Krikorian AD (1973) Stomatal mechanics. Am J Bot 60:163–171CrossRefGoogle Scholar
  3. Bailey IW, Nast CG (1945) Morphology and relationships of Trochodendron and Tetracentron. I. Stem, root, and leaf. J Arnold Arboretum 26:143–154Google Scholar
  4. Bailey IW, Thompson WP (1918) Additional notes upon the angiosperms Tetracentron, Trochodendron, and Drimys, in which vessels are absent from the wood. Ann Bot-London 32:503–512Google Scholar
  5. Basov КA (2005) ANSYS: user manual. DMK press, Moscow (in Russian) Google Scholar
  6. Bissing DR (1982) Evolution of leaf architecture in the chaparral species Fremontodendron californicum ssp. Californicum (Sterculiaceae). Am J Bot 69:957–972CrossRefGoogle Scholar
  7. Bondeson W (1952) Entwicklungsgeschichte und Bau der Spaltöffnungen bei den Gattungen Trochodendron Sieb. et Zucc., Tetracentron Oliv. und Drimys J.R. et G. Forst. Acta Horti Bergiani 16:169–217Google Scholar
  8. Bremer B, Bremer K, Chase MW, Fay MF, Reveal JL, Soltis DE, Soltis PS, Stevens PF, Anderberg AA, Moore MJ, Olmstead RG, Rudall PJ, Sytsma KJ, Tank DC, Wurdack K, Xiang JQ-Y, Zmarzty S (2009) An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG III. Bot J Linn Soc 161:105–121CrossRefGoogle Scholar
  9. Carlquist S, Schneider EL (2002) The tracheid-vessel element transition in angiosperms involves multiple independent features: cladistic consequences. Am J Bot 89:185–195CrossRefPubMedGoogle Scholar
  10. Carr DJ, Carr SGM (1980) Eucalyptus stomata with occluded anterior chambers. Protoplasma 104:239–251CrossRefGoogle Scholar
  11. Cooke JR, De Baerdemaeker JG, Rand RH, Mang HA (1976) A finite element shell analysis of guard cell deformations. T ASAE 19:1107–1121CrossRefGoogle Scholar
  12. Cooke JR, Rand RH, Mang HA, De Baerdemaeker JG, Lee JY (2008) Shell analysis of elliptical guard cells in higher plants: a review. Proceedings of the 6th international conference on computation of shell and spatial structures IASS-IACM 2008, 28–31 May 2008, Cornell University, Ithaca, NY, USAGoogle Scholar
  13. DeMichele DW, Sharpe PJH (1973) An analysis of the mechanics of guard cell motion. J Theor Biol 41:77–96. doi: 10.1016/0022-5193(73)90190-2 CrossRefPubMedGoogle Scholar
  14. Dyer RA, Codd LE, Rycroft HB (1963) Flora of Southern Africa 26. Government Printers, PretoriaGoogle Scholar
  15. Esau K (1960) Anatomy of seed plants. Wiley, JNC, New YorkGoogle Scholar
  16. Evert RF (2006) Esau’s Plant anatomy, meristems, cells, and tissues of the plant body: their structure, function, and development, 3rd edn. Wiley, HobokenCrossRefGoogle Scholar
  17. Feild TS, Zwieniecki MA, Donoghue MJ, Holbrook NM (1998) Stomatal plugs of Drimys winteri (Winteraceae) protect leaves from mist but not drought. P Natl Acad Sci USA 95:14256–14259. doi: 10.1073/pnas.95.24.14256 CrossRefGoogle Scholar
  18. Franks PJ, Farquhar GD (2007) The mechanical diversity of stomata and its significance in gas-exchange control. Plant Physiol 143:78–87. doi: 10.1104/pp.106.089367 CrossRefPubMedPubMedCentralGoogle Scholar
  19. Fu DZ, Endress PK (2001) Trochodendraceae. In: Raven PH, Wu ZY (eds) Flora of China 6. Science Press, Beijing, and Missouri Botanical Garden Press, St. Louis, p 124Google Scholar
  20. Gamalei YuV (1988) Features of xeromorphosis. In: Sokolov VE, Shagdarsuren O (eds) Deserts of Eastern Gobi desert steppe: characterization of the dominant plant species. Nauka, Leningrad, pp 67–84 (in Russian) Google Scholar
  21. Gharun M, Tarryn L, Pfautsch S, Adams MA (2015) Stomatal structure and physiology do not explain differences in water use among montane eucalypts. Oecologia 177:1171–1181. doi: 10.1007/s00442-015-3252-3 CrossRefPubMedGoogle Scholar
  22. Golysheva MD (1976) The leaf structure of Trochodendron aralioides. Byulleten’ Moskovskogo Obshchestva Ispytatelei Prirody. Otdel Biologicheskii 81:84–95 (in Russian) Google Scholar
  23. Grace OM, Simmonds MSJ, Smith GF, Van Wyk AE (2009) Taxonomic significance of leaf surface morphology in Aloe section Pictae (Xanthorrhoeaceae). Bot J Linn Soc 160:418–428. doi: 10.1111/j.1095-8339.2009.00982.x CrossRefGoogle Scholar
  24. Guttenberg H (1959) Die physiologische Anatomie der Spaltöffnungen. Handb Pflanzen Physiol 17:399–414Google Scholar
  25. Haberlandt G (1924) Physiologische Pflanzenanatomie. Verlag von Wilhelm Engelmann, LeipzigGoogle Scholar
  26. Jordan GJ, Weston PH, Carpenter RJ, Dillon RA, Brodribb TJ (2008) The evolutionary relations of sunken, covered, and encrypted stomata to dry habitats in Proteaceae. Am J Bot 95:521–530. doi: 10.3732/ajb.2007333 CrossRefPubMedGoogle Scholar
  27. Jost L (1907) Lectures on plant physiology. Clarendon Press, OxfordGoogle Scholar
  28. Karnovsky MJ (1965) A formaldehyde-glutaraldehyde fixative of high osmolarity for use in electron microscopy. J Cell Biol 27:137AGoogle Scholar
  29. Kerp H (1990) The study of fossil gymnosperms by means of cuticular analysis. Palaios 5:548–569CrossRefGoogle Scholar
  30. Kramer PJ, Kozlowski TT (1979) Physiology of woody plants. Academic Press, New YorkGoogle Scholar
  31. Kuo J (2007) Electron microscopy: methods and protocols, 2nd edn. Tolova, New JerseyCrossRefGoogle Scholar
  32. Lawrence KL (2006) ANSYS workbench tutorial (ANSYS Release 10), SDC Publications, Schoroff Development Corporation, University of Texas at ArlingtonGoogle Scholar
  33. Leeuwenberg AJM, Kupicha FK, Barink MM, Beentje HJ, De Kruif APM, Plaizier AC, Zwetsloot HJC (1985) Apocynaceae. In: Launert E (ed) Flora zambesiaca 7(2). Flora Zambesiaca Managing Committee, London, pp 395–503Google Scholar
  34. Li H-F, Chaw S-M, Du C-M, Ren Y (2011) Vessel elements present in the secondary xylem of Trochodendron and Tetracentron (Trochodendraceae). Flora 206:595–600. doi: 10.1016/j.flora.2010.11.018 CrossRefGoogle Scholar
  35. Madenci E, Guven I (2006) The finite element method and applications in engineering using ANSYS. Springer Science + Business Media, LLCGoogle Scholar
  36. Meidner H, Mansfield TA (1968) Physiology of stomata. McGraw–Hill, LondonGoogle Scholar
  37. Mollenhauer HH (1964) Plastic embedding mixtures for use in electron microscopy. Stain Technol 39:111–114PubMedGoogle Scholar
  38. Niklas KJ, Spatz H-Ch (2014) Plant physics. The University of Chicago Press, Chicago and LondonGoogle Scholar
  39. Pathan AK, Bond J, Gaskin RE (2010) Sample preparation for SEM of plant surfaces. Mater Today 12:32–43CrossRefGoogle Scholar
  40. Pautov A, Yakovleva O, Krylova E, Gussarova G (2016) Large lipid droplets in leaf epidermis of angiosperms. Flora 219:62–67. doi: 10.1016/j.flora.2015.12.010 CrossRefGoogle Scholar
  41. Raschke K (1975) Stomatal action. Ann Rev Plant Physio 26:309–340CrossRefGoogle Scholar
  42. Reynolds ES (1963) The use of lead citrate at high pH as an electron-opaque stain in electron microscopy. J Cell Biol 17:208–212CrossRefPubMedPubMedCentralGoogle Scholar
  43. Roth-Nebelsick A, Hassiotou F, Veneklaas EJ (2009) Stomatal crypts have small effects on transpiration: a numerical model analysis. Plant Physiol 151:2018–2027. doi: 10.1104/pp.109.146969 CrossRefPubMedPubMedCentralGoogle Scholar
  44. Roth-Nebelsick A, Fernández V, Peguero-Pina JJ, Sancho-Knapik D, Gil-Pelegrín E (2013) Stomatal encryption by epicuticular waxes as a plastic trait modifying gas exchange in a Mediterranean evergreen species (Quercus coccifera L.). Plant, Cell Environ 36:579–589. doi: 10.1111/j.1365-3040.2012.02597.x CrossRefGoogle Scholar
  45. Sargeant JA (1983) The preparation of leaf surfaces for scanning electron microscopy. Comparative study. J Microsc 129:103–110. doi: 10.1111/j.1365-2818.1983.tb04164.x CrossRefGoogle Scholar
  46. Schönherr J, Bukovac MJ (1972) Penetration of stomata by liquids: dependence on surface tension, wettability, and stomatal morphology. Plant Physiol 49:813–819. doi: 10.1104/pp.49.5.813 CrossRefPubMedPubMedCentralGoogle Scholar
  47. Schwendener S (1881) Űber Bau und Mechanik der Spaltöffnungen. Monatsber Preuss Akad Wiss 46:833–867Google Scholar
  48. Sharova EI (2004) Cell wall in plants. St. Peterburg State University, St. Peterburg (in Russian) Google Scholar
  49. Sharpe PJH, Wu H, Spence RD (1987) Stomatal mechanics. In: Zeiger E, Farquhar GD, Cowan JR (eds) Stomatal FUNCTION. Stanford Univ. Press, Stanford, California, pp 91–114Google Scholar
  50. Sitte P, Weiler EW, Kadereit JW, Bresinsky A, Körner C (2002) Strasburger: Lehrbuch der Botanik, 35th edn. Spektrum Akademischer Verlag Heidelberg, BerlinGoogle Scholar
  51. Smith AC (1945) A taxonomic review of Trochodendron and Tetracentron. J Arnold Arboretum 26:123–142CrossRefGoogle Scholar
  52. Takhtajan AL (1980) The order Trochodendrales. In: Takhtajan AL (ed) The life of plants. V(1) The flowering plants. Education, Moscow, pp 229–231 (in Russian)Google Scholar
  53. Turrell FM (1947) Citrus leaf stomata: structure, composition, and pore size in relation to penetration of liquids. Bot Gaz 108:476–483CrossRefGoogle Scholar
  54. Vaihinger K (1941) Die Bewegungsmechanik der Spaltöffnungen. Protoplasma 36:430–443CrossRefGoogle Scholar
  55. Van Wyk AE, Robbertse PJ, Kok PDF (1982) The genus Eugenia L. (Myrtaceae) in southern Africa: the structure and taxonomic value of stomata. Bot J Linn Soc 84:41–56. doi: 10.1111/j.1095-8339.1982.tb00359.x CrossRefGoogle Scholar
  56. Von Mohl H (1856) Welche Ursachen bewirken die Erweiterung und Verengung der Spaltöffnungen? Botanische Zeitung 14:697–704Google Scholar
  57. Walter H (1974) Die Vegetation der Erde in öko-physiologischer Betrachtung. Bd II: Die gemäßigten und arktischen Zonen. Progress, Moscow (in Russian) Google Scholar
  58. Wilkinson HP (1979) The plant surface (mainly leaf). In: Metcalfe CR, Chalk L (eds) Anatomy of the dicotyledons, vol I, 2nd edn. Clarendon press, Oxford, pp 97–117Google Scholar
  59. Wilmer CM, Fricker MD (1996) Stomata, 2nd edn. Chapman & Hall, LondonCrossRefGoogle Scholar
  60. Wu H-I, Sharpe PJH (1979) Stomatal mechanics. II. Material properties of guard cell walls. Plant Cell Environ 2:235–244. doi: 10.1111/j.1365-3040.1979.tb00075.x CrossRefGoogle Scholar
  61. Zhang Z, Zhang H, Endress PK (2003) Hamamelidaceae. In: Raven PH, Wu ZY (eds) Flora of China 9. Science Press, Beijing, and Missouri Botanical Garden Press, St. Louis, pp 18–42Google Scholar
  62. Ziegenspeck H (1938) Die Micellierung der Turgeszen-mechanismen. Teil I. Die Spaltöffnungen (mit phylogenetischen Ausblicken). Bot Archiv 39: 268–309, 332–372Google Scholar
  63. Ziegenspeck H (1941) Der Bau der Spaltöffnungen. Teil III. Eine phyletisch- physiologische Studie. Repertorium specierum novarum regni vegetabilis (Fedde. Rep. Beih) 123:1–56Google Scholar
  64. Ziegenspeck H (1955) Die Farbenmikrophotographie, ein Hilfsmittel zum objectiven Nachweis submikroskopischer Strukturelemente. Die Radiomicellierung und Filierung der Schleisszellen von Ophioderma pendulum. Photographie und Wissenschaft 4:19–22Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.Department of Botany, Faculty of BiologySt. Petersburg State UniversitySt. PetersburgRussia
  2. 2.Department of Hydroelasticity, Faculty of Mathematics and MechanicsSt. Petersburg State UniversitySt. PetersburgRussia
  3. 3.Natural History Museum, University of OsloOlsoNorway

Personalised recommendations