Advertisement

Trees

, Volume 31, Issue 1, pp 105–114 | Cite as

Effects of heartwood formation on sugar maple (Acer saccharum Marshall) discoloured wood proportion

  • Sharad Kumar BaralEmail author
  • Frank Berninger
  • Robert Schneider
  • David Pothier
Original Article

Abstract

Key message

Discoloured heartwood proportion (DHP) decreases with an increasing rate of heartwood formation for vigorous sugar maple trees, suggesting that age-related increase in DHP is due to increasing likelihood of injuries with tree age.

Abstract

Sugar maple heartwood is more susceptible to decay and discolouration than the sapwood. To understand heartwood formation, foliage, sapwood, heartwood, and discoloured wood areas as well as other biometric variables were measured on 79 trees sampled in two sites in south-eastern Quebec, Canada. Tree growth was related to heartwood formation and discolouration with a modelling approach. Heartwood formation increased with tree height, age, and crown size, but decreased with increasing leaf area to stem basal area ratio. In general, the proportion of discoloured heartwood increased with an increasing rate of heartwood formation. However, for trees visually classified as vigorous, the proportion of discoloured heartwood tended to decline with an increasing rate of heartwood formation. This indicates that the size/age-related increase in discoloured wood proportion in sugar maple is possibly due to older trees being more likely to have injuries and inoculations by fungi. Thus, residual stands composed of high vigour trees can likely maintain higher growth while minimizing discoloured wood proportion.

Keywords

Wood discolouration Heartwood formation Sapwood area Northern hardwoods Eastern Canada 

Notes

Acknowledgments

We gratefully acknowledge the financial support that was provided by FRQNT (Fonds de recherche du Québec—Nature et technologies), NSERC (Natural Sciences and Engineering Research Council of Canada), and the Quebec Ministère des Forêts, de la Faune et des Parcs. Support is gratefully appreciated for field work and the sampling design that was provided by Filip Havreljuk, Université Laval. We thank two anonymous reviewers for their comments. We also thank Sébastien Guénette, Alain Forget-Desrosiers, Valérie Guèvremont, Emmanuel Caron-Garant, Audrey Gagné-Delorme, Geneviève Dubreuil, Jean-Christophe Dubreuil, and Genevieve Degre-Timmons for their help in the field and laboratory.

Compliance with ethical standards

Conflict of interest

The authors have declared that there is no any conflict of interest. The work was supported by a grant from the Fonds de recherche du Québec-Nature et technologies (2010-FT-136016).

Supplementary material

468_2016_1459_MOESM1_ESM.docx (16 kb)
Supplementary material 1 (DOCX 16 kb)

References

  1. Bamber RK (1976) Heartwood, its function and formation. Wood Sci Technol 10:1–8CrossRefGoogle Scholar
  2. Baral SK, Schneider R, Pothier D, Berninger F (2013) Predicting sugar maple (Acer saccharum) discoloured wood characteristics. Can J For Res 43:649–657. doi: 10.1139/cjfr-2013-0017 CrossRefGoogle Scholar
  3. Beauchamp K (2011) The biology of heartwood formation in Sitka Spruce and Scots Pine. PhD Thesis, University of EdinburghGoogle Scholar
  4. Binkley D, Stape JL, Ryan MG et al (2002) Age-related decline in forest ecosystem growth: an individual-tree, stand-structure hypothesis. Ecosystems 5:58–67. doi: 10.1007/s10021-001-0055-7 CrossRefGoogle Scholar
  5. Boddy L, Raynera DM (1983) Origins of decay in living deciduous trees: the role of moisture content and a re-appraisal of the expanded concept of tree decay. New Phytol 94:623–641. doi: 10.1111/j.1469-8137.1983.tb04871.x CrossRefGoogle Scholar
  6. Boulet B (2005) Défauts externes et indices de la carie des arbres. Guide d’interprétation, 2nd edn. Ministère des Ressources naturelles et de la Faune du Québec, QuébecGoogle Scholar
  7. Cochard H (2006) Cavitation in trees. C R Phys 7:1018–1026. doi: 10.1016/j.crhy.2006.10.012 CrossRefGoogle Scholar
  8. Dixon HH, Joly J (1894) On the ascent of sap. Philos Trans R Soc Lond Ser B 1:563–576Google Scholar
  9. England J, Attiwill P (2007) Changes in sapwood permeability and anatomy with tree age and height in the broad-leaved evergreen species Eucalyptus regnans. Tree Physiol 8:1113–1124CrossRefGoogle Scholar
  10. Erickson MD, Mroz GD, Reed DD (1992) Silvicultural influence on heartwood discoloration in sugar maple. N J Appl For 9:27–29Google Scholar
  11. Ewers BE, Mackay DS, Gower ST et al (2002) Tree species effects on stand transpiration in northern Wisconsin. Water Resour Res 38:8-1–8-11. doi: 10.1029/2001WR000830
  12. Fan ZX, Zhang SB, Hao GY et al (2012) Hydraulic conductivity traits predict growth rates and adult stature of 40 Asian tropical tree species better than wood density. J Ecol 100:732–741. doi: 10.1111/j.1365-2745.2011.01939.x CrossRefGoogle Scholar
  13. Good HM, Murray PM, Dale HM (1955) Studies on heartwood formation and staining in sugar maple, Acer saccharum Marsh. Can J Bot 33:31–41. doi: 10.1139/b55-004 CrossRefGoogle Scholar
  14. Hari P, Heliövaara K, Kulmala L (2013) Physical and physiological forest. Ecology. doi: 10.1007/978-94-007-5603-8 Google Scholar
  15. Hartmann H, Beaudet M, Messier C (2008) Using longitudinal survival probabilities to test field vigour estimates in sugar maple (Acer saccharum Marsh.). For Ecol Manag 256:1771–1779. doi: 10.1016/j.foreco.2008.02.045 CrossRefGoogle Scholar
  16. Havreljuk F, Achim A, Pothier D (2013) Regional variation in the proportion of red heartwood in sugar maple and yellow birch. Can J For Res 43:278–287. doi: 10.1139/cjfr-2012-0479 CrossRefGoogle Scholar
  17. Havreljuk F, Achim A, Auty D et al (2014) Integrating standing value estimations into tree marking guidelines to meet wood supply objectives. Can J For Res. doi: 10.1139/cjfr-2013-0407 Google Scholar
  18. Hillis WE (1968) Chemical aspects of heartwood formation. Wood Sci Technol 2:241–259CrossRefGoogle Scholar
  19. Hillis WE (1987) Heartwood and tree exudates. Phytochemicals in human health protection, nutrition, and plant defense. Springer, New York. doi: 10.1007/978-1-4615-4689-4_9
  20. Hölttä T, Kurppa M, Nikinmaa E (2013) Scaling of xylem and phloem transport capacity and resource usage with tree size. Front Plant Sci 4:496. doi: 10.3389/fpls.2013.00496 CrossRefPubMedPubMedCentralGoogle Scholar
  21. Kadunc A (2007) Factors influencing the formation of heartwood discolouration in sycamore (Acer pseudoplatanus L.). Eur J For Res 126:349–358CrossRefGoogle Scholar
  22. Kutscha NP, Sachs IB (1962) Color test for differentiating heartwood and sapwood in certain softwood tree species. USDA Forest Service, Forest Products Laboratory, Madison (Rep No. 2246) Google Scholar
  23. Maherali H, de Lucia E (2000) Xylem conductivity and vulnerability to cavitation of ponderosa pine growing in contrasting climates. Tree Physiol 20:859–867CrossRefPubMedGoogle Scholar
  24. Majcen Z, Bédard S, Godbout C (2003) Silvicultural research in Québec’s hardwood forest. Research note tabled at the XII world forestry congress, Québec, Canada, by the Ministère des Ressources naturelles, de la Faune et des Parcs du QuébecGoogle Scholar
  25. McCulloh K, Sperry J, Adler F (2003) Water transport in plants obeys Murray’s law. Nature 421:939–942CrossRefPubMedGoogle Scholar
  26. Mencuccini M, Grace J (1996) Hydraulic conductance, light interception and needle nutrient concentration in Scots pine stands and their relations with net primary productivity. Tree Physiol 16:459–468. doi: 10.1093/treephys/16.5.459 CrossRefPubMedGoogle Scholar
  27. Morais MC, Pereira H (2007) Heartwood and sapwood variation in Eucalyptus globulus Labill. trees at the end of rotation for pulp wood production. Ann For Sci 64:665–671. doi: 10.1051/forest:2007045 CrossRefGoogle Scholar
  28. Ogasa M, Miki NH, Murakami Y, Yoshikawa K (2013) Recovery performance in xylem hydraulic conductivity is correlated with cavitation resistance for temperate deciduous tree species. Tree Physiol 33:335–344. doi: 10.1093/treephys/tpt010 CrossRefPubMedGoogle Scholar
  29. Ohman JH (1968) Decay and discoloration of sugar maple. In: Forest pest leaflet, vol 110. USDA Forest Service, North Central Forest Experiment Station, St. PaulGoogle Scholar
  30. Pausch RC, Grote EE, Dawson TE (2000) Estimating water use by sugar maple trees: considerations when using heat-pulse methods in trees with deep functional sapwood. Tree Physiol 20:217–227CrossRefPubMedGoogle Scholar
  31. Pearce RB (1996) Antimicrobial defences in the wood of living trees. New Phytol 132:203–233CrossRefGoogle Scholar
  32. Pinheiro JC, Bates D (2000) Mixed-effects models in S and S-PLUS, Statistics. Springer, New YorkCrossRefGoogle Scholar
  33. Pinheiro J, Bates D, DebRoy S; R-Development Core Team (2015) nlme:Linear and nonlinear mixed effects models. In: R Package version 3.1-121. http://cran.r-project.org/package=nlme
  34. Pothier D, Margolis HA, Waring RH (1989) Patterns of change of saturated sapwood permeability and sapwood conductance with stand development. Can J For Res 19:432–439. doi: 10.1139/x89-068 CrossRefGoogle Scholar
  35. Pothier D, Fortin M, Auty D et al (2013) Improving tree selection for partial cutting through joint probability modelling of tree vigor and quality. Can J For Res 43:288–298. doi: 10.1139/cjfr-2012-0402 CrossRefGoogle Scholar
  36. Priestley JH (1932) The growing tree. Forestry 6:105–112Google Scholar
  37. Raulier F, Bernier PY, Ung C-H, Boutin R (2002) Structural differences and functional similarities between two sugar maple (Acer saccharum) stands. Tree Physiol 22:1147–1156CrossRefPubMedGoogle Scholar
  38. Robitaille A, Saucier J-P (1998) Paysages régionaux du Québec méridional. Ministère des Ressources Naturelles et de la Faune du Québec, Québec, p 213pGoogle Scholar
  39. Russell MB, Weiskittel AR (2011) Maximum and largest crown width equations for 15 tree species in Maine. North J Appl For 28:84–91Google Scholar
  40. Ryan MG, Yoder BJ (1997) Hydraulic limits to tree height and tree growth. Bioscience 47:235–242CrossRefGoogle Scholar
  41. Schneider R, Berninger F, Ung C-H et al (2011) Within crown variation in the relationship between foliage biomass and sapwood area in jack pine. Tree Physiol 31:22–29. doi: 10.1093/treephys/tpq104 CrossRefPubMedGoogle Scholar
  42. Schawarze FWMR (2007) Wood decay under microscope. Fungal Biol Rev 21:133–170CrossRefGoogle Scholar
  43. Selin A (1994) Sapwood–heartwood proportion related to tree diameter, age and growth rate in Picea abies. Can J For Res 24:1022–1028CrossRefGoogle Scholar
  44. Shigo AL (1984) Compartmentalization: a how trees grow and defend themselves! Annu Rev Phytopathol 22:189–214CrossRefGoogle Scholar
  45. Shigo AL, Hillis WE (1973) Heartwood, discolored wood, and microorganisms in living trees. Annu Rev Phytopathol 11:197–222CrossRefGoogle Scholar
  46. Shigo AL, Marx H (1977) Compartmentalization of decay in trees (CODIT), vol 73Google Scholar
  47. Shortle WC, Dudzik KR (2012) Wood decay in living and dead trees: a pictorial overview. In: General technical report NRS-97. U.S. Department of Agriculture, Forest Service, Northern Research Station, Newtown SquareGoogle Scholar
  48. Sievänen R, Nikinmaa E, Perttunen J (1997) Evaluation of importance of sapwood senescence on tree growth using the model LIGNUM. Silva Fenn 31:329–340CrossRefGoogle Scholar
  49. Sperry J, Perry A, Sullivan J (1991) Pit membrane degradation and air-embolism formation in ageing xylem vessels of Populus tremuloides Michx. J Exp Bot 42:1399–1406CrossRefGoogle Scholar
  50. Sprugel DG (1983) Correcting for bias in log-transformed allometric equations. Ecology 64:209. doi: 10.2307/1937343 CrossRefGoogle Scholar
  51. Stokes A, Berthier S (2000) Irregular heartwood formation in Pinus pinaster Ait. is related to eccentric, radial, stem growth. For Ecol Manag 135:115–121CrossRefGoogle Scholar
  52. Taylor AM, Gartner BL, Morrell JJ (2002) Heartwood formation and natural durability: a review. Wood Fiber Sci 34:587–611Google Scholar
  53. Tewari VP, Mariswamy KM (2013) Heartwood, sapwood and bark content of teak trees grown in Karnataka, India. J For Res 24:721–725CrossRefGoogle Scholar
  54. Tulik M (2014) The anatomical traits of trunk wood and their relevance to oak (Quercus robur L.) vitality. Eur J For Res 133:845–855. doi: 10.1007/s10342-014-0801-y CrossRefGoogle Scholar
  55. Tyree MT (1997) The cohesion–tension theory of sap ascent: current controversies. J Exp Bot 48:1753–1765Google Scholar
  56. Valentine HY, Baldwin VC Jr, Gregoire TG, Burkhart HE (1994) Surrogates for foliar dry matter in loblolly pine. For Sci 40:576–585Google Scholar
  57. Wiemann MC, Brown JP, Bennett ND (2002) Comparison of methods to determine disk and heartwood areas. In: Research paper NE–720Google Scholar
  58. Zimmermann MH, Brown CL (1971) Trees: structure and function. Springer, New YorkCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Sharad Kumar Baral
    • 1
    • 2
    • 5
    Email author
  • Frank Berninger
    • 1
    • 4
  • Robert Schneider
    • 1
    • 2
  • David Pothier
    • 1
    • 3
  1. 1.Centre d’étude de la forêt (CEF)QuebecCanada
  2. 2.Chaire de recherche sur la forêt habitée, Département de biologie, chimie et géographieUniversité du Québec à RimouskiRimouskiCanada
  3. 3.Département des sciences du bois et de la forêt, Pavillon Abitibi-PriceUniversité LavalQuébecCanada
  4. 4.Department of Forest Sciences, PL 27 (Latokartanonkaari 7), 224University of HelsinkiHelsinkiFinland
  5. 5.Northern Hardwoods Research InstituteUniversité de MonctonEdmundstonCanada

Personalised recommendations