Advertisement

Trees

, Volume 30, Issue 4, pp 1021–1032 | Cite as

Adventitious rooting of conifers: influence of biological factors

  • Maria Amely ZavattieriEmail author
  • Carla Ragonezi
  • Krystyna Klimaszewska
Review

Abstract

Vegetative propagation of superior conifer trees can be achieved, e.g., through rooted cuttings or rooted microshoots, the latter predominantly through in vitro tissue culture. Both techniques are used to achieve rapid multiplication of trees with favorable genetic combinations and to capture a large proportion of the genetic diversity in a single generation cycle. However, adventitious rooting of shoots (cuttings) is often not efficient due to various problems, such as scarcity of roots and cessation of their growth, both of which limit the application of vegetative propagation in some conifer species. Many factors are involved in the adventitious rooting of shoots, including physical and chemical ones, such as plant growth regulators, carbohydrates, light quality, temperature and rooting substrates, or media [reviewed by Ragonezi et al. (Trees 24(6):975–992, 2010)]. The focus of this review is on biological factors, such as inoculations with Agrobacterium rhizogenes, plant-growth promoting rhizobacteria and other endophytes, and mycorrhizal fungi, which were found to stimulate adventitious rooting. These microorganisms could contribute not only to adventitious root development but also to help in protecting conifer plants against pathogenic microorganisms, facilitate acclimation and transplanting, and contribute to more sustainable, chemical-free forests.

Keywords

Biotization Mycorrhization Plant-growth promoting bacteria Gymnosperms 

Abbreviations

BnR

Binucleate Rhizoctonia

DNA

Deoxyribonucleic acid

ECM

Ectomycorrhizal fungi or Ectomycorrhizas

ERM or EMF

Ericoid mycorrhizal fungi; Ericoid mycorrhizas

GA3

Gibberellic acid or Gibberellin A3

IAA

Indole-3-acetic acid

IBA

Indole-3-butyric acid

M

Molar

µM  

Micromolar

MHB

Mycorrhization helper bacteria

Mm

Millimolar

MS

Murashige and Skoog (1962) culture medium

NAA

1-Naphthaleneacetic acid

PGPR

Plant-growth promoting rhizobacteria

PGR

Plant growth regulators

RSB

Root-stimulating bacteria

Ri

Root-inducing plasmid

t-DNA

Transfer DNA

Ti

Tumor-inducing plasmid

TIBA

2,3,5-Triiodobenzoic acid

VAM

Vesicular–arbuscular mycorrhizas

Notes

Acknowledgments

Ms. Pamela Cheers, Natural Resources Canada, Canadian Forest Service is thanked for English editing.

References

  1. Adriaensen K, Vangronsveld J, Colpaert JV (2006) Zinc-tolerant Suillus bovinus improves growth of Zn-exposed Pinus sylvestris seedlings. Mycorrhiza 16:553–558CrossRefPubMedGoogle Scholar
  2. Allen MF (1991) The ecology of mycorrhizae. Cambridge University Press, New YorkGoogle Scholar
  3. Amalesh S, Gouranga D, Sanjoy KD (2011) Roles of flavonoids in plants. Int J Pharm Sci Tech 6:12–35Google Scholar
  4. Aronen TS, Häggman HM, Salonen M (1996) Rooting of Scots pine fascicular shoots by Agrobacterium rhizogenes. For Genet 3:13–22Google Scholar
  5. Benizri E, Baudin E, Guckert A (2001) Root colonization by plant growth promoting Rhizobacteria. Biocontrol Sci Technol 5:557–574CrossRefGoogle Scholar
  6. Bent E, Tuzun S, Chanway CP, Enebak S (2001) Alterations in plant growth and in root hormone levels of lodgepole pines inoculated with rhizobacteria. Can J Microbiol 47:793–800CrossRefPubMedGoogle Scholar
  7. Berch SM, Xiao G, Bulmer C (1999) Commercial mycorrhizal inoculants: value added conifers for site rehabilitation or just another way to spend money? In proceedings: 19th Annual Meeting of the forest Nursey Association of British Columbia, Vancouver, B.C. Extension Service, Tree Improvement Br., SurreyGoogle Scholar
  8. Bergmann BA, Dukes J, Stomp AM (1997) Infection of Pinus radiata with Agrobacterium rhizogenes and long-term growth of detached hairy roots in vitro. N Z J For Sci 27(1):11–22Google Scholar
  9. Bloemberg GV, Lugtenberg BJJ (2001) Molecular basis of plant growth promotion and biocontrol by rhizobacteria. Curr Opin Plant Biol 4:343–350CrossRefPubMedGoogle Scholar
  10. Boulanger F, Berkaloff A, Richaud F (1986) Identification of hairy root loci in the T-regions of Agrobacterium rhizogenes Ri plasmids. Plant Mol Biol 6:271–279CrossRefPubMedGoogle Scholar
  11. Britton MT, Escobar MA, Dandekar AM (2008) The oncogenes of Agrobacterium tumefaciens and Agrobacterium rhizogenes. In: Agrobacterium: from biology to biotechnology. Springer, New York. pp 523–563. doi: 10.1007/978-0-387-72290-0_14
  12. Brundrett M (2004) Diversity and classification of mycorrhizal associations. Biol Rev 79:473–495CrossRefPubMedGoogle Scholar
  13. Burns JA, Schwarz OJ (1996) Bacterial stimulation of adventitious rooting on in vitro cultured slash pine (Pinus elliottii Engelm.) seedling explants. Plant Cell Rep 15:405–408CrossRefPubMedGoogle Scholar
  14. Cairney JWG (2000) Evolution of mycorrhiza systems. Naturwissenschaften 87:467–475CrossRefPubMedGoogle Scholar
  15. Cardarelli M, Spano L, De Paolis A, Mauro ML, Vitali G, Costantino P (1985) Identification of the genetic locus responsible for nonpolar root induction by Agrobacterium rhizogenes 1855. Plant Mol Biol 5:385–391CrossRefPubMedGoogle Scholar
  16. Cardarelli M, Mariotti D, Pomponi M, Spano L, Capone I, Contantino P (1987) Agrobacterium rhizogenes T-DNA capable of inducing hairy root phenotype. Mol Gen Genet 209:475–480CrossRefPubMedGoogle Scholar
  17. Carvajal-Muñoz JS, Carmona-Garcia CE (2012) Benefits and limitations of biofertilization in agricultural practices. Livestock Res Rural Dev, vol 24, Article #43. http://www.lrrd.org/lrrd24/3/carv24043.htm. Retrieved 2 Feb 2016
  18. Chandra S (2012) Natural plant genetic engineer Agrobacterium rhizogenes: role of T-DNA in plant secondary metabolism. Biotechnol Lett 34:407–415CrossRefPubMedGoogle Scholar
  19. Chanway CP (1997) Inoculation of tree roots with plant growth promoting soil bacteria: an emerging technology for reforestation. For Sci 43(1):99–112Google Scholar
  20. Chanway CP, Holl FB (1993a) First year field performance of spruce seedlings inoculated with plant growth promoting rhizobacteria. Can J Microbiol 39:1084–1088CrossRefGoogle Scholar
  21. Chanway CP, Holl FB (1993b) Ecotypic specificity of spruce emergence-stimulating Pseudomonas putida. For Sci 39:520–527Google Scholar
  22. Chanway CP, Holl FB (1994) Ecological growth response specificity of two Douglas-fir ecotypes inoculated with coexistent beneficial rhizosphere bacteria. Can J Bot 72:582–586CrossRefGoogle Scholar
  23. Chilton MD, Tepfer D, Petit A, David C, Casse-Delbart F, Tempé J (1982) Agrobacterium rhizogenes inserts T-DNA into the genomes of the host plant root cells. Nature 295(5842):432–434CrossRefGoogle Scholar
  24. Choudhury H, Kumaria S, Tandon P (2014) Pinus biotechnology: progress and prospects. In: Ramawat KG, Merillon J-M, Ahuja MR (eds) Tree biotechnology, 1st edn, CRC Press, Taylor & Francis Group, Boca Raton, London, New York pp 223–247Google Scholar
  25. Citovsky V, Kozlovsky SV, Lacroix B, Zaltsman A, Dafny-Yelin M, Vyas S, Tovkach A, Tzfira T (2007) Biological systems of the host cell involved in Agrobacterium infection. Cell Microbiol 9:9–20CrossRefPubMedGoogle Scholar
  26. David A, Faye M, Rancillac M (1983) Influence of auxin and mycorrhizal fungi on the in vitro formation and growth of Pinus pinaster roots. Plant Soil 71:501–505CrossRefGoogle Scholar
  27. Ercan G, Yuce S, Turgut K, Taskin M (1999) Agrobacterium rhizogenes-mediated hairy root formation in some Rubia tinctorum L. populations grown in Turkey. Turk J Bot 23:373–377Google Scholar
  28. Felten J, Kohler A, Morin E, Bhalerao RP, Palme K, Martin F, Ditengou FA, Legué V (2009) The ectomycorrhizal fungus Laccaria bicolor stimulates lateral root formation in Poplar and Arabidopsis through auxin transport and signaling. Plant Physiol 151:1991–2005. doi: 10.1104/pp.109.147231 CrossRefPubMedPubMedCentralGoogle Scholar
  29. Fini A, Frangi P, Amoroso G, Piatti R, Faoro M, Bellasio C, Ferrini F (2011) Effect of controller inoculation with specific mycorrhizal fungi from the urban environment on growth and physiology of containerized shade tree species growing under different water regimes. Mycorrhiza 21:703–719CrossRefPubMedGoogle Scholar
  30. Finlay RD (2008) Ecological aspects of mycorrhizal symbiosis: with special emphasis on the functional diversity of interactions involving the extraradical mycelium. J Exp Bot 59:1115–1126. doi: 10.1093/jxb/ern059 CrossRefPubMedGoogle Scholar
  31. Frey-Klett P, Garbaye J, Tarkka M (2007) The mycorrhiza helper bacteria revisited. New Phytol 176:22–36. doi: 10.1186/1471-2180-12-164 CrossRefPubMedGoogle Scholar
  32. Gay G (1990) Effect of the ectomycorrhizal fungi Hebeloma hiemale on adventitious root formation in de-rooted Pinus halepensis shoot hypocotyls. Can J Bot 68:1265–1270CrossRefGoogle Scholar
  33. Gelvin SB (1990) Crown gall disease and hairy root disease: a sledgehammer and a tackhammer. Plant Physiol 92:281–285CrossRefPubMedPubMedCentralGoogle Scholar
  34. Georgiev MI, Agostini E, Ludwig-Müller J, Xu J (2012) Genetically transformed roots: from plant disease to biotechnological resource. Trends Biotechnol 30:528–537CrossRefPubMedGoogle Scholar
  35. Graham JH, Miller RM (2005) Mycorrhizas: gene to function. Plant Soil 274:79–100CrossRefGoogle Scholar
  36. Gray EJ, Smith DL (2005) Intracellular and extracellular PGPR: commonalities and distinctions in the plant-bacterium signaling processes. Soil Biol Biochem 37:395–412CrossRefGoogle Scholar
  37. Grönberg H, Kaparakis G, Sen R (2006) Binucleate Rhizoctonia (Ceratorhiza spp.) as non-mycorrhizal endophytes alter Pinus sylvestris L. seedling root architecture and affect growth of rooted cuttings. Scand J For Res 4:450–457. doi: 10.1080/02827580601019662 CrossRefGoogle Scholar
  38. Grönroos R, von Arnold S (1987) Initiation of roots on hypocotyl cuttings of Pinus contorta in vitro. Physiol Plant 69:227–236CrossRefGoogle Scholar
  39. Häggman H, Aronen T (2000) Agrobacterium rhizogenes for rooting recalcitrant woody plants. In: Jain SM, Minocha SC (eds) Molecular biology of woody plants, forestry sciences 66, vol 2. Kluwer Academic Publishers, Dordrecht, pp 47–78CrossRefGoogle Scholar
  40. Hassan S, Mathesius U (2012) The role of flavonoids in root-rhizosphere signaling: opportunities and challenges for improving plant-microbe interactions. J Exp Bot 63:3429–3444. doi: 10.1093/jxb/err430 CrossRefPubMedGoogle Scholar
  41. Heinonsalo J, Juurola E, Linden A, Pumpanen J (2015) Ectomycorrhizal fungi affect Scots pine photosynthesis through nitrogen and water economy, not only through increased carbon demand. Environ Exp Bot 109:103–112CrossRefGoogle Scholar
  42. Hrynkiewicz K, Baum C (2012) The potential of rhizosphere microorganisms to promote the plant growth in disturbed soils. In: Malik A, Grohman E (eds) Environmental protection strategies for sustainable development, Strategies for sustainability, Springer Science Buisness Media B.V, pp 35–64. doi: 10.1007/978-94-007-1591-2_2
  43. Huang Y, Diner AM, Karnosky DF (1991) Agrobacterium rhizogenes-mediated genetic transformation and regeneration of a conifer: Larix decidua. In Vitro Cell Dev Biol Plant 27:201–207CrossRefGoogle Scholar
  44. Husen H (2003) Screening of soil bacteria for plant growth promotion activities in vitro. Indones J Agric Sci 4:27–31Google Scholar
  45. Johnston-Monje D, Raizada MN (2011) Integration of Biotechnologies—plant and endophyte relationships: nutrient management. In: Murray M-Y (ed) Comprehensive Biotechnology, 2nd edn, vol 4, Elsevier, Oxford, pp 713–727Google Scholar
  46. Kamilova F, Kravchenko LV, Shaposhnikov AI, Azarova T, Makarova N, Lugtenberg B (2006) Organic acids, sugars and l-tryptophane in exudates of vegetables growing on stonewool and their effects on activities of rhizosphere bacteria. Mol Plant Microbe Interact 19:250–256CrossRefPubMedGoogle Scholar
  47. Kaparakis G, Sen R (2006) Binucleate Rhizoctonia (Ceratorhiza spp.) induce adventitious root formation in hypocotyl cuttings of Pinus sylvestris L. Scand J For Res 21:444–449CrossRefGoogle Scholar
  48. Karabaghli C, Frey-Klett P, Sotta B, Bonnet M, Le Tacon F (1998) In vitro effects of Laccaria bicolor S238 N and Pseudomonas fluorescens strain BBc6 on rooting of de-rooted shoot hypocotyls of Norway spruce. Tree Physiol 18:103–111CrossRefPubMedGoogle Scholar
  49. Karabaghli-Degron C, Sotta B, Bonnet M, Gay G, Le Tacon F (1998) The auxin transport inhibitor 2,3,5-triiodobenzoic acid (TIBA) inhibits the stimulation of in vitro lateral root formation and the colonization of the tap-root-cortex of Norway spruce (Picea abies) seedlings by the ectomycorrhizal fungus Laccaria bicolor. New Phytol 140:723–733CrossRefGoogle Scholar
  50. Kyndt T, Quispe D, Zhai H, Jarret R, Ghislain M, Liu Q, Gheysen G, Kreuze JF (2015) The genome of cultivated sweet potato contains Agrobacterium T-DNAs with expressed genes: an example of a naturally transgenic food crop. PNAS 112:5844–5849CrossRefPubMedPubMedCentralGoogle Scholar
  51. Li M, Leung DWM (2003) Root induction in radiata pine using Agrobacterium rhizogenes. Electron J Biotechnol 6:254–261Google Scholar
  52. Lucy M, Reed E, Glick BR (2004) Applications of free living plant growth-promoting rhizobacteria. Antonie Van Leeuwenhoek 86:1–25CrossRefPubMedGoogle Scholar
  53. Lynn DG, Chang M (1990) Phenolic signals in combination: implications for plant development. Annu Rev Plant Physiol Plant Mol Biol 41:497–526CrossRefGoogle Scholar
  54. Mafia RG, Alfenas AC, Ferreira EM, Binoti DHB, Mafia GMV, Mounteer AH (2009) Root colonization and interaction among growth promoting rhizobacteria isolates and eucalypts species. Rev Árvore 33:1–9CrossRefGoogle Scholar
  55. Magnussen D, Clapham D, Gronroos R, von Arnold S (1994) Induction of hairy and normal roots on Picea abies, Pinus sylvestris and Pinus contorta by Agrobacterium rhizogenes. Scand J For Res 9:46–51. doi: 10.1080/02827589409382811 CrossRefGoogle Scholar
  56. Malloch DW, Pirozynski KA, Raven PH (1980) Ecological and evolutionary significance of mycorrhizal symbioses in vascular plants (a review). Proc Natl Acad Sci USA 77:2113–2118CrossRefPubMedPubMedCentralGoogle Scholar
  57. Mandal SM, Chakraborty D, Dey S (2010) Phenolic acids act as signaling molecules in plant-microbe symbioses. Plant Signal Behav 5:359–368CrossRefPubMedPubMedCentralGoogle Scholar
  58. Martin F, Duplessis S, Ditengou F, Lagrange H, Voiblet C, Lapeyrie F (2001) Developmental cross talking in the ectomycorrhizal symbiosis: signals and communication genes. New Phytol 151:145–154. doi: 10.1046/j.1469-8137.2001.00169.x CrossRefGoogle Scholar
  59. McAfee BJ, White EE, Pelcher LE, Lapp MS (1993) Root induction in pine (Pinus) and larch (Larix) spp. using Agrobacterium rhizogenes. Plant Cell Tissue Organ Culture 34:53–62CrossRefGoogle Scholar
  60. Meyer A, Tempé J, Costantino P (2000) Hairy root: a molecular overview. Functional analysis of Agrobacterium rhizogenes T-DNA genes. In: Stacey G, Keen NT (eds) Plant-microbe interactions, vol 5. American Phytopathological Society Press, St. Paul, pp 93–139Google Scholar
  61. Mihaljević S, Stipković S, Jelaska S (1996) Increase of root induction in Pinus nigra explants using agrobacteria. Plant Cell Rep 15:610–614CrossRefPubMedGoogle Scholar
  62. Mihaljević S, Katavić V, Jelaska S (1999) Root formation in micropropagated shoots of Sequoia sempervirens using Agrobacterium. Plant Sci 141(1):73–80. doi: 10.1016/S0168-9452(98)00223-4 CrossRefGoogle Scholar
  63. Mohajjel-Shoja H, Clément B, Perot J, Alioua M, Otten L (2011) Biological activity of the Agrobacterium rhizogenes-derived trolCgene of Nicotiana tabacum and its functional relation to other plastgenes. Mol Plant-Microbe Int 24:44–53CrossRefGoogle Scholar
  64. Moore L, Warren G, Strobel G (1979) Involvement of a plasmid in the hairy root disease of plants caused by Agrobacterium rhizogenes. Plasmid 2:617–626CrossRefPubMedGoogle Scholar
  65. Murashige T, Skoog F (1962) A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiol Plant 15:473–497CrossRefGoogle Scholar
  66. Niemi K, Salonen M, Ernstsen A, Heinonen-Tanski H, Häggman H (2000) Application of ectomycorrhizal fungi in rooting of Scots pine fascicular shoots. Can J For Res 30:1221–1230CrossRefGoogle Scholar
  67. Niemi K, Vuorinen T, Ernstsen A, Häggman H (2002) Ectomycorrhizal fungi and exogenous auxins influence root and mycorrhiza formation of Scots pine hypocotyls cuttings in vitro. Tree Physiol 22:1231–1239CrossRefPubMedGoogle Scholar
  68. Niemi K, Scagel C, Häggman H (2004) Application of ectomycorrhizal fungi in vegetative propagation of conifers. Plant Cell Tissue Organ Culture 78:83–91CrossRefGoogle Scholar
  69. Niemi K, Julkunen-Tiitto R, Tegelberg R, Häggman H (2005) Light sources with different spectra affect root and mycorrhiza formation in Scots pine in vitro. Tree Physiol 25:123–128CrossRefPubMedGoogle Scholar
  70. Nihorimbere V, Ongena M, Smargiassi M, Thonart P (2011) Beneficial effect of the rhizosphere microbial community for plant growth and health. Biotechnol Agron Soc Environ 15:327–337Google Scholar
  71. Normand L, Bärtschi H, Debaud JC, Gay G (1996) Rooting and acclimatization of micropropagated cuttings of Pinus pinaster and Pinus sylvestris are enhanced by the ectomycorrhizal fungus Hebeloma cylindrosporum. Physiol Plant 98:759–766CrossRefGoogle Scholar
  72. Oliveira P, Barriga J, Cavaleiro C, Peixe A, Potes AZ (2003) Sustained in vitro root development obtained in Pinus pinea inoculated with ectomycorrhizal fungi. Forestry 76:579–587CrossRefGoogle Scholar
  73. Oswald ET, Ferchau HA (1968) Bacterial associations of coniferous mycorrhizae. Plant Soil 28(1):187–192CrossRefGoogle Scholar
  74. Otten L, Burr T, Szegedi ES (2008) Agrobacterium: a disease-causing bacterium. In: Tzfira T, Citovsky V (eds) Agrobacterium, from biology to biotechnology. Springer, New York, pp 1–46Google Scholar
  75. Özyiğit İİ (2012) Agrobacterium tumefaciens and its use in plant biotechnology. In: Ashraf M et al (eds) Crop production for agricultural improvement. Springer, Netherlands, pp 317–361CrossRefGoogle Scholar
  76. Petit A, Stougaard J, Kuhle A, Marcker KA, Tempé J (1987) Transformation and regeneration of the legume Lotus corniculatus: a system for molecular studies of symbiotic nitrogen fixation. Mol Gen Genet 207:245–250CrossRefGoogle Scholar
  77. Plett JM, Martin F (2012) Poplar root exudates contain compounds that induce the expression of MiSSP7 in Laccaria bicolor. Plant Signal Behav 17:12–15. doi: 10.4161/psb.7.1.18357 CrossRefGoogle Scholar
  78. Ragonezi C, Klimaszewska K, Castro MR, Lima M, de Oliveira P, Zavattieri MA (2010) Adventitious rooting of conifers: influence of physical and chemical factors. Trees 24(6):975–992. doi: 10.1007/s00468-010-0488-8 CrossRefGoogle Scholar
  79. Ragonezi C, Caldeira AT, Martins MR, Dias LS, Santos-Silva C, Ganhão E, Miralto O, Pereira I, Louro R, Klimaszewska K, Zavattieri A (2012) Pisolithus arhizus (Scop.) Rauschert improves growth of adventitious roots and acclimatization on in vitro regenerated plantlets of Pinus pinea L. Propag Ornam Plants 3:139–147Google Scholar
  80. Ragonezi C, Teixiera D, Caldeira AT, Martins MR, Santos-Silva C, Ganhão E, Klimaszewska K (2013) O-coumaric acid ester, a potential early signaling molecule in Pinus pinea and Pisolithus arhizus symbiosis established in vitro. J Plant Interact 9(1):297–305. doi: 10.1080/17429145.2013.831489 CrossRefGoogle Scholar
  81. Read DJ (1999) Mycorrhiza. The state of art. In: Varma A, Hock B (eds) Mycorrhiza: structure, function, molecular biology and biotechnology, 2nd edn. Springer-Verlag, Berlin Heidelberg, pp 3–36CrossRefGoogle Scholar
  82. Richaud F, Aubry C, Beyou A, Boulanger F, Estramareix C, Fleury-Guerout AM, Mignotte C, Reyes O (1987) The Agrobacterium rhizogenes root-inducing system. In: Verna DPS, Brisson N (eds). Molecular genetics of plant-microbe interactions; current Plant Science and Biotechnology in agriculture, vol 3, Martinus Nijhoff Publisher, Leiden, Netherlands, pp 6–10. doi: 10.1007/978-94-009-4482-4_2
  83. Saharan BS, Nehra V (2011) Plant growth promoting rhizobacteria: a critical review. Life Sci Med Res Aston J 21:1–30Google Scholar
  84. Sarmast MK, Salehi H, Khosh-Khui M (2012) In vitro rooting of Araucaria excelsa R.Br. var. glauca using Agrobacterium rhizogenes. JCEA 13(1):123–130. doi: 10.5513/JCEA01/13.1.1024 CrossRefGoogle Scholar
  85. Scagel CF (1994) Mediation of conifer root growth by mycorrhizal fungi and plant growth regulators. PhD Thesis, Oregon State University, USAGoogle Scholar
  86. Schmulling T, Schell J, Spena A (1988) Single genes from Agrobacterium rhizogenes influence plant development. EMBO J 7:2621–2629PubMedPubMedCentralGoogle Scholar
  87. Schrey SD, Erkenbrack E, Früh E, Fengler S, Hommel K, Horlacher N, Schulz D, Ecke M, Kulik A, Fiedler HP, Hampp R, Tarkka MT (2012) Production of fungal and bacterial growth modulating secondary metabolites is widespread among mycorrhiza-associated streptomycetes. BMC Microbiol 12:164. doi: 10.1186/1471-2180-12-164 CrossRefPubMedPubMedCentralGoogle Scholar
  88. Seddas P, Gianinazzi-Pearson V, Schoefs B, Küster H, Wipf D, Balu F (2009) Communication and signaling in the plant–fungi symbiosis: the mycorrhiza. In: Baluška F (ed) Plant-environment interactions. Signaling and communication in plants. Springer-Verlag, Berlin Heidelberg, pp 45–71CrossRefGoogle Scholar
  89. Sharma AR (2003) Characterization of root stimulating bacterium and its root stimulating abilities. Dissertation Presented for the Doctor of Philosophy Degree Thesis University of Tennessee, Knoxville, USAGoogle Scholar
  90. Shishido M, Chanway CP (2000) Colonization and growth promotion of outplanted spruce seedlings pre-inoculated with plant growth-promoting rhizobacteria in the greenhouse. Can J For Res 30:845–854CrossRefGoogle Scholar
  91. Shishido M, Massicotte HB, Chanway CP (1996) Effect of plant growth promoting Bacillus strains on pine and spruce seedling growth and mycorrhizal infection. Ann Bot 77:433–441CrossRefGoogle Scholar
  92. Spaepen S, Vanderleyden J, Remans R (2007) Indole-3-acetic acid in microbial and microorganism-plant signaling. FEMS Microbiol Rev 31:425–448CrossRefPubMedGoogle Scholar
  93. Spaepen S, Vanderleyden J, Okon Y (2009) Plant growth-promoting actions of rhizobacteria. In: Kader J-C, Delseny M (series eds). Adv Bot Res 51:283–320Google Scholar
  94. Taylor AFS, Alexander I (2005) The ectomycorrhizal symbiosis: life in the real world. Mycologist 19:102–112CrossRefGoogle Scholar
  95. Taylor AFS, Gebauer G, Read DJ (2004) Uptake of nitrogen and carbon from double-labelled (15N and 13C) glycine by mycorrhizal pine seedlings. New Phytol 164:383–388CrossRefGoogle Scholar
  96. Tepfer D (1983) The biology of genetic transformation of higher plants by Agrobacterium rhizogenes. In: Pühler A (ed) Molecular genetics of the bacteria plant interaction. Springer-Verlag, Berlin, pp 248–258CrossRefGoogle Scholar
  97. Tzfira T, Yarnitzky O, Vainstein A, Altman A (1996) Agrobacterium rhizogenes-mediated DNA transfer in Pinus halepensis Mill. Plant Cell Rep 16(1–2):26–31CrossRefPubMedGoogle Scholar
  98. Vacheron J, Desbrosses G, Bouffaud M-L, Touraine B, Moënne-Loccoz Y, Muller D, Legendre L, Wisniewski-Dyé F, Prigent-Combaret C (2013) Plant growth-promoting rhizobacteria and root system functioning. Front Plant Sci 4:1–19CrossRefGoogle Scholar
  99. Veena V, Taylor CG (2007) Agrobacterium rhizogenes: recent developments and promising applications. In Vitro Cell Dev Biol Plant 43:383–403CrossRefGoogle Scholar
  100. Villalobos-Amador E, Rodríguez-Hernández G, Pérez-Molphe-Balch E (2002) Organogenesis and Agrobacterium rhizogenes-induced rooting in Pinus maximartinezii Rzedowsky and P. pinceana  Gordon. Plant Cell Rep 20:779–785CrossRefGoogle Scholar
  101. Vonderwell JD, Enebak SA, Samuelson LJ (2001) Influence of two plant growth-promoting rhizobacteria on loblolly pine root respiration and IAA activity. For Sci 47:197–202Google Scholar
  102. Wallander H (2000) Uptake of P from apatite by Pinus sylvestris seedlings colonized by different ectomycorrhizal fungi. Plant Soil 218:249–256CrossRefGoogle Scholar
  103. White F, Garfinkel D, Huffman G, Gordon M, Nester E (1983) Sequences homologous to Agrobacterium rhizogenes T-DNA in the genomes of uninfected plants. Nature 301:348–350CrossRefGoogle Scholar
  104. White FF, Taylor BH, Huffman GA, Gordon MP, Nester EW (1985) Molecular and genetic analysis of the transferred DNA regions of the root-inducing plasmid of Agrobacterium rhizogenes. J Bacteriol 164:33–44PubMedPubMedCentralGoogle Scholar
  105. Yibrah HS, Grönroos R, Lindroth A, Franzén H, Clapham D, von Arnold S (1996) Agrobacterium rhizogenes-mediated induction of adventitious rooting from Pinus contorta hypocotyls and the effect of 5-azacytidine on transgene activity. Trans Res 5:75–85CrossRefGoogle Scholar
  106. Zahir A, Arshad M, Frankenberger WT Jr (2003) Plant growth promoting rhizobacteria: applications and perspectives in agriculture. Adv Agron 81:97–168CrossRefGoogle Scholar
  107. Zaspel I, Edwal D (2001) Promotion of root development and root growth of forest plants by rhizobacteria. IOBC/wprs Bull 24:161–166Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.ICT-Instituto das Ciências da TerraUniversidade de ÉvoraÉvoraPortugal
  2. 2.Universidade Federal dos Vales do Jequitinhonha e Mucuri-UFVJMDiamantinaBrazil
  3. 3.Natural Resources Canada, Canadian Forest Service, Laurentian Forestry CenterQuebecCanada

Personalised recommendations