Advertisement

Trees

, Volume 30, Issue 5, pp 1495–1505 | Cite as

Periodicity and environmental drivers of apical and lateral growth in a Cerrado woody species

  • Fabio Bosio
  • Sergio Rossi
  • Carmen R. Marcati
Original Article

Abstract

Key message

Apical and lateral growth are seasonal in a Cerrado species, and these events are related to each other and linked with climatic and environmental features.

Abstract

In the Cerrado, a tropical ecosystem with seasonal rainfall, we investigated the timing of leaf production and cambial activity, and checked whether these features are related to each other and with climatic and environmental factors. Between September 2011 and December 2012, sampling of main stem and vegetative phenological observations of Kielmeyera grandiflora (Wawra) Saddi (Calophyllaceae) were done monthly to assess seasonality in leaf production and cambial activity, and to compare these features with each other. To check the relationship of bud opening and the onset of cambial activity with climatic and environmental features, the average temperature and day length, and the precipitation sum in a time window ranging from 1 to 30 days before the occurrence of these events were recorded, and the coefficient of variation was calculated. Leaf production and cambial activity were seasonal. Bud opening occurred in September 2011 and August 2012, during the dry season. The onset of cambial activity occurred in October both in 2011 and 2012, 1–2 months after bud opening, at the beginning of the rainy season. The cambium was dormant in May, during the rainy season. Photoperiod and temperature showed low coefficients of variation in the time window before bud opening and onset of cambial activity, while rainfall presented a high coefficient of variation. Thus, both apical and lateral growth are seasonal events in Cerrado species, and are related to each other. A set of climatic and environmental features is related with seasonal growth, among which photoperiod and temperature may be important in the regulation of these events.

Keywords

Budding Cambium Kielmeyera grandiflora Leaf production Phloem Xylem 

Notes

Acknowledgements

This work was supported by Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) (2009/17778-9, 2015/14954-1). F. Bosio thanks the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) and Fonds de la Recherche du Québec—Nature et Technologies (187055) for scholarships. We thank Liliane Catarina Pereira for assistance in laboratory procedures and Wolker Bittrich by species identification. Special thanks to the weather station staff of Faculdade de Ciências Agronômicas, Univ Estadual Paulista, campus Botucatu, for providing the meteorological data.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

468_2016_1383_MOESM1_ESM.docx (17 kb)
Supplementary material 1 (DOCX 16 kb)

References

  1. Ajmal S, Iqbal M (1987) Annual rhythm of cambial activity in Streblus asper. IAWA J 8:275–283CrossRefGoogle Scholar
  2. Aljaro ME, Avila G, Hoffmann A, Kummerow J (1972) The annual rhythm of cambial activity in two woody species of the Chilean “Matorral”. Amer J Bot 59:879–885CrossRefGoogle Scholar
  3. Aloni R, Schwalm K, Langhans M, Ullrich CI (2003) Gradual shifts in sites of free-auxin production during leaf-primordium development and their role in vascular differentiation and leaf morphogenesis in Arabidopsis. Planta 216:841–853. doi: 10.1007/s00425-002-0937-8 PubMedGoogle Scholar
  4. Baba K, Karlberg A, Schmidt J, Schrader J, Hvidsten TR, Bako L, Bhalerao RP (2011) Activity–dormancy transition in the cambial meristem involves stage-specific modulation of auxin response in hybrid aspen. Proc Natl Acad Sci USA 108:3418–3423. doi: 10.1073/pnas.1011506108 CrossRefPubMedPubMedCentralGoogle Scholar
  5. Begum S, Nakaba S, Oribe Y, Kubo T, Funada R (2010) Cambial sensitivity to rising temperatures by natural condition and artificial heating from late winter to early spring in the evergreen conifer Cryptomeria japonica. Trees 24:43–52. doi: 10.1007/s00468-009-0377-1 CrossRefGoogle Scholar
  6. Bennett HS, Wyrick AD, Lee SW, McNeil JH (1976) Science and art in preparing tissues embedded in plastic for light microscopy, with special reference to glycol methacrylate, glass knives and simple stains. Stain Technl 51:71–97CrossRefGoogle Scholar
  7. Berleth T, Mattsson J, Hardtke CS (2000) Vascular continuity and auxin signals. Trends Plant Sci 5:387–393CrossRefPubMedGoogle Scholar
  8. Berlyn GP, Miksche JP (1976) Botanical microtechnique and cytochemstry. The Iowa State University Press, AmesGoogle Scholar
  9. Borchert R (1999) Climatic periodicity, phenology and cambium activity in tropical dry forest trees. IAWA J 20:239–248CrossRefGoogle Scholar
  10. Borchert R (2000) Organismic and environmental controls of bud growth in tropical trees. In: Víemont JD, Crabbé J (eds) Dormancy in plants: from whole plant behavior to cellular control. CAB International, Wallingford, pp 87–107CrossRefGoogle Scholar
  11. Caddah MK, Mayer JLS, Bittrich V, Amaral MCE (2012) Species limits in the Kielmeyera coriacea complex (Calophyllaceae)—a multidisciplinary approach. Bot J Linn Soc 168:101–115CrossRefGoogle Scholar
  12. Caffarra A, Donnelly A (2011) The ecological significance of phenology in four different tree species: effects of light and temperature on bud burst. Int J Biometeorol 55:711–721. doi: 10.1007/s00484-010-0386-1 CrossRefPubMedGoogle Scholar
  13. Clarke A, Gaston KJ (2006) Climate, energy and diversity. Proc R Soc B 273:2257–2266. doi: 10.1098/rspb.2006.3545 CrossRefPubMedPubMedCentralGoogle Scholar
  14. Coradin VTR (2000) Formação de anéis de crescimento e sazonalidade da atividade cambial de dez espécies lenhosas do cerrado. PhD Thesis, Universidade de BrasíliaGoogle Scholar
  15. Costa MS, Vasconcelos TJ, Barros CF, Callado CH (2013) Does growth rhythm of a widespread species change in distinct growth sites? IAWA J 34:498–509. doi: 10.1163/22941932-00000040 CrossRefGoogle Scholar
  16. Coutinho LM (2002) O bioma do cerrado. In: Klein AL (ed) Eugen Warming e o cerrado brasileiro. UNESP, Imprensa Oficial do Estado, São Paulo, pp 77–92Google Scholar
  17. Coutinho LM (2006) O conceito de bioma. Acta Bot Bras 20:13–23CrossRefGoogle Scholar
  18. Cunha AR, Martins D (2009) Classificação climática para os municípios de Botucatu e São Manoel, SP. Irriga 14:1–11CrossRefGoogle Scholar
  19. Dave YS, Rao KS (1982) Seasonal activity of the vascular cambium in Gmelina arborea Roxb. IAWA J 3:59–65CrossRefGoogle Scholar
  20. Deshpande BP, Rajendrababu T (1985) Seasonal changes in the structure of the secondary phloem of Grewia tiliaefolia, a deciduous tree from India. Ann Bot 56:61–72Google Scholar
  21. Deslauriers A, Rossi S, Anfodillo T, Saracino A (2008) Cambial phenology, wood formation and temperature thresholds in two contrasting years at high altitude in southern Italy. Tree Physiol 28:863–871CrossRefPubMedGoogle Scholar
  22. Deslauriers A, Beaulieu M, Balducci L, Giovannelli A, Gagnon MJ, Rossi S (2014) Impact of warming and drought on carbon balance related to wood formation in black spruce. Ann Bot 114:335–345. doi: 10.1093/aob/mcu111 CrossRefPubMedPubMedCentralGoogle Scholar
  23. Dié A, Kitin P, Kouamé FNG, Van den Bulcke J, Van Acker J, Beeckman H (2012) Fluctuations of cambial activity in relation to precipitation result in annual rings and intra-annual growth zones of xylem and phloem in teak (Tectona grandis) in Ivory Coast. Ann Bot 110:861–873. doi: 10.1093/aob/mcs145 CrossRefPubMedPubMedCentralGoogle Scholar
  24. Durigan G, Siqueira MF, Franco GADC, Contieri WA (2004) A flora arbustivo-arbórea do Médio Paranapanema: base para a restauração dos ecossistemas naturais. In: Vilas-Boas O, Durigan G (eds) Pesquisas em conservação e recuperação ambiental no Oeste Paulista: resultados da cooperação Brasil/Japão. Páginas e Letras, São Paulo, pp 199–239Google Scholar
  25. Evert RF (1963) The cambium and seasonal development of the phloem in Pyrus malus. Amer J Bot 50:149–159CrossRefGoogle Scholar
  26. Evert RF (2006) Esau’s plant anatomy: meristems, cells, and tissues of the plant body: their structure, function, and development, 3rd edn. Wiley INC, New JerseyCrossRefGoogle Scholar
  27. Farrar JJ, Evert RF (1997) Ultrastructure of cell division in the fusiform cells of the vascular cambium of Robinia pseudoacacia. Trees 11:203–215Google Scholar
  28. Fournier LA (1974) Un método cuantitativo para la medición de características fenológicas em árboles. Turrialba 24:422–423Google Scholar
  29. Frankenstein C, Eckstein D, Schmitt U (2005) The onset of cambium activity–a matter of agreement? Dendrochronologia 23:57–62. doi: 10.1016/j.dendro.2005.07.007 CrossRefGoogle Scholar
  30. Fukuda H (1996) Xylogenesis: initiation, progression, and cell death. Annu Rev Plant Physiol Plant Mol Biol 47:299–325. doi: 10.1146/annurev.arplant.47.1.299 CrossRefPubMedGoogle Scholar
  31. Gričar J, Čufar K, Oven P, Schmitt U (2005) Differentiation of terminal latewood tracheids in silver fir trees during autumn. Ann Bot 95:959–965. doi: 10.1093/aob/mci112 CrossRefPubMedPubMedCentralGoogle Scholar
  32. Gričar J, Zupančič M, Čufar K, Koch G, Schmitt UWE, Oven P (2006) Effect of local heating and cooling on cambial activity and cell differentiation in the stem of Norway spruce (Picea abies). Ann Bot 97:943–951. doi: 10.1093/aob/mcl050 CrossRefPubMedPubMedCentralGoogle Scholar
  33. Jackson PC, Meinzer FC, Bustamante M, Goldstein G, Franco A, Rundel PW, Caldas L, Igler E, Causin F (1999) Partitioning of soil water among tree species in a Brazilian Cerrado ecosystem. Tree Physiol 19:717–724CrossRefPubMedGoogle Scholar
  34. Kozlowski TT, Kramer Paul J, Pallardy SG (1991) The physiological ecology of woody plants. Academmic Press, San DiegoGoogle Scholar
  35. Krepkowski J, Bräuning A, Gebrekirstos A, Strobl S (2011) Cambial growth dynamics and climatic control of different tree life forms in tropical mountain forest in Ethiopia. Trees 25:59–70. doi: 10.1007/s00468-010-0460-7 CrossRefGoogle Scholar
  36. Lachaud S, Catesson AM, Bonnemain JL (1999) Structure and functions of the vascular cambium. C R Acad Sci III 322:633–650CrossRefPubMedGoogle Scholar
  37. Larson PR (1969) Wood formation and the concept of wood quality. Bulletin no. 74. New Haven, CT: Yale Univ Sch For 54pGoogle Scholar
  38. Lenza E, Klink CA (2006) Comportamento fenológico de espécies lenhosas em um cerrado sentido restrito de Brasília, DF. Revista Brasil Bot 29:627–638CrossRefGoogle Scholar
  39. Li WF, Ding Q, Cui KM, He XQ (2013) Cambium reactivation independent of bud unfolding involves de novo IAA biosynthesis in cambium regions in Populus tomentosa Carr. Acta Physiol Plant 35:1827–1836. doi: 10.1007/s11738-013-1220-2 CrossRefGoogle Scholar
  40. Ljung K, Bhalerao RP, Sandberg G (2001) Sites and homeostatic control of auxin biosynthesis in Arabidopsis during vegetative growth. Plant J. 28:465–474CrossRefPubMedGoogle Scholar
  41. Lu CY, Chiang SHT (1975) Seasonal activity of the cambium in the young branch of Liquidambar formosana Hance. Taiwania 20:32–47Google Scholar
  42. Marcati CR, Angyalossy V, Evert RF (2006a) Seasonal variation in wood formation of Cedrela fissilis (Meliaceae). IAWA J 27:199–211CrossRefGoogle Scholar
  43. Marcati CR, Oliveira JS, Machado SR (2006b) Growth rings in cerrado woody species: occurrence and anatomical markers. Biota Neotrop 6. http://www.biotaneotropica.org.br/v6n3/pt/abstract?article+bn00206032006. Accessed 01 June 2011
  44. Marcati CR, Milanez CRD, Machado SR (2008) Seasonal development of secondary xylem and phloem in Schizolobium parahyba (Vell.) Blake (Leguminosae: Caesalpinioideae). Trees 22:3–12. doi: 10.1007/s00468-007-0173-8 CrossRefGoogle Scholar
  45. Morel H, Mangenet T, Beauchêne J, Ruelle J, Nicolini E, Heuret P, Thibaut B (2015) Seasonal variations in phenological traits: leaf shedding and cambial activity in Parkia nitida Miq. and Parkia velutina Benoist (Fabaceae) in tropical rainforest. Trees 29:973–984. doi: 10.1007/s00468-015-1177-4 CrossRefGoogle Scholar
  46. Morellato LPC, Rodrigues RR, Leitão-Filho HD, Joly CA (1989) Estudo comparativo da fenologia de espécies arbóreas de floresta de altitude e floresta mesófila semidecídua na Serra do Japi, Jundiaí, São Paulo. Revta Brasil Bot 12:85–98Google Scholar
  47. Motta PEF, Curi IN, Franzmeier DP (2002) Relation of soils and geomorphic surfaces in the Brazilian Cerrado. In: Oliveira PS, Marquis RJ (eds) The cerrados of Brazil. Columbia University Press, New York, pp 13–32Google Scholar
  48. O’Brien TP, McCully ME (1981) The study of plant structure: principles and selected methods. Termarcarphi Pty LTD, MelbourneGoogle Scholar
  49. O’Brien TP, Feder N, McCully ME (1964) Polychromatic staining of plant cell walls by toluidine blue O. Protoplasma 59:368–373CrossRefGoogle Scholar
  50. Oliveira-Filho AT, Ratter JA (2002) Relation of soils and geomorphic surfaces in the Brazilian Cerrado. In: Oliveira PS, Marquis RJ (eds) The cerrados of Brazil. Columbia University Press, New York, pp 91–120Google Scholar
  51. Rajput KS, Rao KS (2000) Cambial activity and development of wood in Acacia nilotica (L.) Del. growing in different forests of Gujarat state. Flora 195:165–171Google Scholar
  52. Rajput KS, Rao KS (2001a) Cambial activity and development of xylem in Tamarindus indica L. growing in different forests of Gujarat state. Acta Bot Hung 43:379–390CrossRefGoogle Scholar
  53. Rajput KS, Rao KS (2001b) Cambial anatomy and annual rhythm of secondary xylem development in the twigs of Azadirachta indica A. Juss. (Meliaceae) growing in different forests of Gujarat State. J Sustain For 14:115–127CrossRefGoogle Scholar
  54. Rao KS, Rajput KS (1999) Seasonal behaviour of vascular cambium in teak (Tectona grandis) growing in moist deciduous and dry deciduous forests. IAWA J 20:85–93CrossRefGoogle Scholar
  55. Rao KS, Rajput KS (2001) Relationship between seasonal cambial activity, development of xylem and phenology in Azadirachta indica growing in different forests of Gujarat State. Ann For Sci 58:691–698CrossRefGoogle Scholar
  56. Rivera G, Elliott S, Caldas LS, Nicolossi G, Coradin VT, Borchert R (2002) Increasing day-length induces spring flushing of tropical dry forest trees in the absence of rain. Trees 16:445–456. doi: 10.1007/s00468-002-0185-3 CrossRefGoogle Scholar
  57. Rossi S, Deslauriers A, Anfodillo T, Morin H, Saracino A, Motta R, Borghetti M (2006) Conifers in cold environments synchronize maximum growth rate of tree-ring formation with day length. New Phytol 170:301–310. doi: 10.1111/j.1469-8137.2006.01660.x CrossRefPubMedGoogle Scholar
  58. Rossi S, Rathgeber CB, Deslauriers A (2009) Comparing needle and shoot phenology with xylem development on three conifer species in Italy. Ann For Sci 66:1–8. doi: 10.1051/forest/2008088 CrossRefGoogle Scholar
  59. Sachs T (2000) Integrating cellular and organismic aspects of vascular differentiation. Plant Cell Physiol 41:649–656CrossRefPubMedGoogle Scholar
  60. Santos MF, Serafim H, Sano PT (2011) Fisionomia e composição da vegetação florestal na Serra do Cipó, MG, Brasil. Acta Bot Bras 25:793–814CrossRefGoogle Scholar
  61. Smith H (2000) Phytochromes and light signal perception by plants—an emerging synthesis. Nature 407:585–591CrossRefPubMedGoogle Scholar
  62. Suzuki M, Yoda K, Suzuki H (1996) Phenological comparison of the onset of vessel formation between ring-porous and diffuse-porous deciduous trees in a Japanese temperate forest. IAWA J 17:431–444CrossRefGoogle Scholar
  63. Time and Date (2014) Time and Date. http://www.timeanddate.com/sun/brazil/sao-paulo. Accessed 24 March 2014
  64. Trouet V, Mukelabai M, Verheyden A, Beeckman H (2012) Cambial growth season of brevi-deciduous Brachystegia spiciformis trees from south central Africa restricted to less than 4 months. PLoS One 7:e47364. doi: 10.1371/journal.pone.0047364 CrossRefPubMedPubMedCentralGoogle Scholar
  65. Venugopal N, Krishnamurthy KV (1987) Seasonal production of secondary xylem in the twigs of certain tropical trees. IAWA J 8:31–40CrossRefGoogle Scholar
  66. Venugopal N, Liangkuwang MG (2007) Cambial activity and annual rhythm of xylem production of elephant apple tree (Dillenia indica Linn.) in relation to phenology and climatic factor growing in sub-tropical wet forest of northeast India. Trees 21:101–110. doi: 10.1007/s00468-006-0101-3 CrossRefGoogle Scholar
  67. Wang KH, Nobuchi T, Abdul Azim AA, Sahri MH (2013) Seasonal variations in cambial anatomy of plantation-grown Azadirachta excelsa. J Trop For Sci 25:111–117Google Scholar
  68. Wesołowski T, Rowiński P (2006) Timing of bud burst and tree-leaf development in a multispecies temperate forest. For Ecol Manage 237:387–393. doi: 10.1016/j.foreco.2006.09.061 CrossRefGoogle Scholar
  69. Worbes M (1995) How to measure growth dynamics in tropical trees: a review. IAWA J 16:337–351CrossRefGoogle Scholar
  70. Yáñez-Espinosa L, Terrazas T, Lopez-Mata L (2006) Integrated analysis of tropical trees growth: a multivariate approach. Ann Bot 98:637–645. doi: 10.1093/aob/mcl142 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.Departamento de Ciência Florestal, Faculdade de Ciências AgronômicasUNESP-Univ Estadual PaulistaBotucatuBrazil
  2. 2.Département des Sciences FondamentalesUniversité du Québec à ChicoutimiChicoutimiCanada

Personalised recommendations