Skip to main content

Advertisement

Log in

Genetic diversity and population structure of Melia azedarach in North-Western Plains of India

  • Original Article
  • Published:
Trees Aims and scope Submit manuscript

Abstract

Key message

Genetic structure among M. azedarach populations was detected and two subpopulations were present among them. A significant ‘isolation by distance’ was found in M. azedarach population in North-Western Plains of India.

Abstract

Melia azedarach is an important forest tree with pharmaceutical, insecticidal, pesticidal, and commercial significance. It is a good reforestation tree because of its fast growth and drought hardy nature. Genetic variation in a species allows itself to adapt, evolve and respond to environmental stress. It provides the basis for survival of a species and critically influences its evolutionary potential. Assessment of genetic diversity is necessary for improvement and conservation of a species. For this, microsatellite markers are of particular interest given the attributes like co-dominance, reproducibility, hyper variability and abundance throughout the genome. In the present study, we analyzed the genetic diversity and population structure of M. azedarach, an ecologically imperative species growing in the North-Western Plains of India. We developed 43 microsatellite markers, of which 20 were subsequently employed for analysis of diversity and population structure among 33 populations encompassing 318 genotypes representing North-Western Plains of India. A moderate level of diversity (Na = 5.1, Ho = 0.506, He = 0.712, I = 1.386) was assessed. The highest value of ΔK estimated using STRUCTURE indicated 2 subpopulations (K = 2). AMOVA exhibited 73 % variation within populations and 12 % variation was found among regions. Significant positive correlation between geographical and genetic distance was found (Rxy = 0.365, P = 0.010). The present study lays a foundation on a better understanding of genetic dynamics of the species and reveals its diversity and population structure in North-Western Plains of India.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Adamu M, Naidoo V, Eloff JN (2014) The antibacterial activity, antioxidant activity and selectivity index of leaf extracts of thirteen South African tree species used in ethnoveterinary medicine to treat helminth infections. BMC Vet Res 10:52

    Article  PubMed  PubMed Central  Google Scholar 

  • AL-Rubae AY (2009) The potential uses of Melia azedarach L. as pesticidal and medicinal plant review. Am Eurasian J Sustain Agric 3:185–194

    Google Scholar 

  • Banks MA, Eichert W, Olsen JB (2003) Which genetic loci have greater population assignment power? Bioinformatics 19:1436–1438

    Article  CAS  PubMed  Google Scholar 

  • Bhardwaj P, Kumar R, Sharma H, Tewari R, Ahuja PS, Sharma RK (2013) Development and utilization of genomic and genic microsatellite markers in Assam tea (Camellia assamica ssp. assamica) and related Camellia species. Plant Breed 132:748–763

    Article  CAS  Google Scholar 

  • Bockelmann AC, Reusch T, Bijlsma R, Bakker J (2003) Habitat differentiation vs. isolation-by-distance: the genetic population structure of Elymus athericus in European salt marshes. Mol Ecol 12:505–515

    Article  CAS  PubMed  Google Scholar 

  • Carpinella MC, Defago MT, Valladares G, Palacios SM (2003) Antifeedant and insecticide properties of a limonoid from Melia azedarach (Meliaceae) with potential use for pest management. J Agric Food Chem 51:369–374

    Article  CAS  PubMed  Google Scholar 

  • Doligez A, Joly HI (1997) Genetic diversity and spatial structure within a natural stand of a tropical forest tree species, Carapa procera (Meliaceae), in French Guiana. Heredity 79:72–82

    Article  Google Scholar 

  • Doyle JJ (1990) Isolation of plant DNA from fresh tissue. Focus 12:13–15

    Google Scholar 

  • Du Q, Wang B, Wei Z, Zhang D, Li B (2012) Genetic diversity and population structure of Chinese white poplar (Populus tomentosa) revealed by SSR markers. J Hered 103:853–862

    Article  PubMed  Google Scholar 

  • Earl DA (2012) Structure harvester: a website and program for visualizing structure output and implementing the Evanno method. Conserv Genet Resour 4:359–361

    Article  Google Scholar 

  • Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software structure: a simulation study. Mol Ecol 14:2611–2620

    Article  CAS  PubMed  Google Scholar 

  • Fischer M, Husi R, Prati D, Peintinger M, van Kleunen M, Schmid B (2000) RAPD variation among and within small and large populations of the rare clonal plant Ranunculus reptans (Ranunculaceae). Am J Bot 87:1128–1137

    Article  CAS  PubMed  Google Scholar 

  • Glaubitz JC (2004) Convert: a user-friendly program to reformat diploid genotypic data for commonly used population genetic software packages. Mol Ecol Notes 4:309–310

    Article  CAS  Google Scholar 

  • Gupta P, Varshney R (2000) The development and use of microsatellite markers for genetic analysis and plant breeding with emphasis on bread wheat. Euphytica 113:163–185

    Article  CAS  Google Scholar 

  • Hamrick JL, Godt MJW, Sherman-Broyles SL (1992) Factors influencing levels of genetic diversity in woody plant species Population genetics of forest trees. Springer 42:95–124

    Google Scholar 

  • Henderson L (1991) Invasive alien woody plants of the northern Cape. Bothalia 21:177–189

    Google Scholar 

  • Hernández G, Buonamici A, Walker K, Vendramin G, Navarro C, Cavers S (2008) Isolation and characterization of microsatellite markers for Cedrela odorata L. (Meliaceae), a high value neotropical tree. Conserv Genet 9:457–459

    Article  Google Scholar 

  • Inza MV, Zelener N, Fornes L, Gallo LA (2012) Effect of latitudinal gradient and impact of logging on genetic diversity of Cedrela lilloi along the Argentine Yungas Rainforest. Ecol Evol 2:2722–2736

    Article  PubMed  PubMed Central  Google Scholar 

  • Kalinowski ST, Taper ML, Marshall TC (2007) Revising how the computer program Cervus accommodates genotyping error increases success in paternity assignment. Mol Ecol. 16:1099–1106

    Article  PubMed  Google Scholar 

  • Lowe A, Jourde B, Breyne P, Colpaert N, Navarro C, Wilson J, Cavers S (2003) Fine-scale genetic structure and gene flow within Costa Rican populations of mahogany (Swietenia macrophylla). Heredity 90:268–275

    Article  CAS  PubMed  Google Scholar 

  • Maciel M, Morais SM, Bevilaqua C, Camurca-Vasconcelos A, Costa C, Castro C (2006) Ovicidal and larvicidal activity of Melia azedarach extracts on Haemonchus contortus. Vet Parasitol 140:98–104

    Article  CAS  PubMed  Google Scholar 

  • Novick RR, Lemes MR, Navarro C, Caccone A, Bermingham E (2003) Genetic structure of Mesoamerican populations of Big-leaf mahogany (Swietenia macrophylla) inferred from microsatellite analysis. Mol Ecol 12:2885–2893

    Article  PubMed  Google Scholar 

  • Peakall R, Smouse PE (2012) GenAlEx 6.5: genetic analysis in Excel. Population genetic software for teaching and research—an update. Bioinformatics 28:2537–2539

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959

    CAS  PubMed  PubMed Central  Google Scholar 

  • Roop J, Dhaliwal P, Guraya S (2005) Extracts of Azadirachta indica and Melia azedarach seeds inhibit folliculogenesis in albino rats. Braz J Med Biol Res 38:943–947

    Article  CAS  PubMed  Google Scholar 

  • Runo M, Muluvi G, Odee DW (2005) Analysis of genetic structure in Melia volkensii (Gurke) populations using random amplified polymorphic DNA. Afr J Biotechnol 3:421–425

    Article  Google Scholar 

  • Scotti-Saintagne C, Dick CW, Caron H, Vendramin GG, Guichoux E, Buonamici A, Duret C, Sire P, Valencia R, Lemes MR (2013) Phylogeography of a species complex of lowland Neotropical rain forest trees (Carapa, Meliaceae). J Biogeogr 40:676–692

    Article  Google Scholar 

  • Sharma D, Paul Y (2013) Preliminary and Pharmacological Profile of Melia azedarach L.: an Overview. J Appl Pharm Sci 3:133–138

    Google Scholar 

  • Syamsuwida D, Palupi ER, Siregar IZ, Indrawan A (2012) Flower initiation, morphology, and developmental stages of flowering-fruiting of mindi (Melia azedarach L). J Manaj Hutan Trop 18:10

    Google Scholar 

  • Temnykh S, DeClerck G, Lukashova A, Lipovich L, Cartinhour S, McCouch S (2001) Computational and experimental analysis of microsatellites in rice (Oryza sativa L.): frequency, length variation, transposon associations, and genetic marker potential. Genome Res 11:1441–1452

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tourn G, Menvielle M, Scopel A, Pidal B (1999) Clonal strategies of a woody weed: Melia azedarach. Plant Soil 217:111–117

    Article  Google Scholar 

  • Untergasser A, Cutcutache I, Koressaar T, Ye J, Faircloth BC, Remm M, Rozen SG (2012) Primer3—new capabilities and interfaces. Nucl Acids Res 40:e115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Voigt FA, Farwig N, Johnson SD (2011) Interactions between the invasive tree Melia azedarach (Meliaceae) and native frugivores in South Africa. J Trop Ecol 27:355–363

    Article  Google Scholar 

  • Yeh F, Yang R, Boyle T (1999) POPGENE. Microsoft windows-based freeware for population genetic analysis: release 1.31. University of Alberta, Edmonton. Available from http://www.ualberta.ca/~fyeh/popgene_download.html. Accessed 1 May 2014

  • Yulianti, Siregar IZ, Wijayanto N, Darma IT, Syamsuwida D (2011) Genetic variation of Melia azedarach in community forests of West Java assessed by RAPD. Biodivers 12(2):64–69

Download references

Acknowledgments

Authors thank Vice Chancellor, Central University of Punjab, Bathinda for providing the necessary facilities to carry out the present work. ST and SC acknowledge the fellowship received from ICMR towards PhD.

Data archiving statement

The sequence data generated for this study are available under accession numbers from KJ996073 to KJ996095 at NCBI (http://ncbi.nlm.nih.gov). Accession numbers are included in Table 2.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pankaj Bhardwaj.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Communicated by J. Carlson.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 16 kb)

Supplementary material 2 (DOCX 29 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Thakur, S., Choudhary, S., Singh, A. et al. Genetic diversity and population structure of Melia azedarach in North-Western Plains of India. Trees 30, 1483–1494 (2016). https://doi.org/10.1007/s00468-016-1381-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00468-016-1381-x

Keywords

Navigation