, Volume 30, Issue 4, pp 1259–1274 | Cite as

Endo-1,4-β-glucanase gene involved into the rapid elongation of Phyllostachys heterocycla var. pubescens

  • Ming-Bing Zhou
  • Ying Zheng
  • Zhi-Gang Liu
  • Xiang-Wan Xia
  • Ding-Qin Tang
  • Ying Fu
  • Ming Chen
Original Article


Key message

Endo - 1,4 - β - glucanase gene was isolated from Phyllostachys heterocycla var. pubescens internodes. It is engaged in the culm or stem development by regulation of the biosynthesis of cellulose.


The cellulase protein endo-1,4-β-glucanase is a member in the large glycosyl hydrolase gene family 9 (GH 9). It is widely distributed in plants, animals, microorganisms and plays roles in cell wall metabolism, including cellulose biosynthesis and degradation, modification of cell wall polysaccharides and cell wall loosening during cell elongation. Our previous studies have identified a gene homologous to endo-1,4-β-glucanase and found its expression pattern changed significantly during the rapid elongation of Phyllostachys heterocycla var. pubescens internodes. In this work, we isolated the full length endo-1,4-β-glucanase gene from bamboo shoot and named as Phbeta-1,4-glu. Further characterization showed that Phbeta-1,4-glu belongs to GH 9 family, a conserved family in bamboo with slight variation in intron numbers and positions. Phylogenetic analysis revealed that P. heterocycle GH 9 genes exhibit a diverse phylogeny with rice, maize, Brachypodium, poplar and Arabidopsis. Among them, bamboo GH 9 genes show a closer relationship to ones of Brachypodium. RT-PCR analysis demonstrated that the expression pattern of Phbeta-1,4-glu varied among different tissues of bamboo shoot with a lowest expression level in the tender parts. The function of Phbeta-1,4-glu in bamboo’s height growth and cellulose content was confirmed via its transformation into the model plant-Arabidopsis. Functions of Phbeta-1,4-glu in bamboo shoot have been analyzed through a combinational methods of gene structure and phylogeny. Its gene expression pattern has been investigated and its function verified. The results confirmed that Phbeta-1,4-glu engages in the rapid elongation of bamboo culm from cellulose biosynthesis to cellulose degradation. Current investigations provide valuable information for its functional studies and potential utilization in future.


endo-1,4-β-glucanase Phyllostachys heterocycla var. pubescens Internodes Phylogenetic relationship Cellulose 



This work was supported by the grant from the Program of Natural Science Foundation of Zhejiang Province (LR12C16001), and the National Natural Science Foundation of China (31270645, 31500542 and 31470615), and the Opening Foundation of the Key Forestry Disciplines of Zhejiang Province (KF201301).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

468_2016_1363_MOESM1_ESM.tif (8.1 mb)
Fig. S1 Secondary structure of the protein encoded by Phbeta-1,4-glu. α helix: red boxes; β sheet: green boxes; corner: blue boxes; random coil: yellow boxes (TIFF 8247 kb)
468_2016_1363_MOESM2_ESM.tif (17.4 mb)
Fig. S2 Transmembrane domain of the protein encoded by Phbeta-1,4-glu. Transmembrane: red lines; inside: blue lines; outside: pink lines (TIFF 17860 kb)
468_2016_1363_MOESM3_ESM.tif (13.1 mb)
Fig. S3 Fluorescent microscopic analysis of the transgenic plant (a and c) and wild-type plant (b and d). Longitudinal sections (a, b) and transverse sections (c, d) along the plant stems. Bars indicate 200 μm for a and b, and 502 μm for c and d. Red circles refer to difference between these two kinds of plants (TIFF 13462 kb)
468_2016_1363_MOESM4_ESM.docx (11 kb)
Supplementary material 4 (DOCX 11 kb)


  1. Appenzeller L, Doblin M, Barreiro R, Wang HY, Niu XM, Kollipara K, Carrigan L, Tomes D, Chapman M, Dhugga KS (2004) Cellulose synthesis in maize: isolation and expression analysis of the cellulose synthase (CesA) gene family. Cellulose 11:287–299CrossRefGoogle Scholar
  2. Beguin P (1990) Molecular biology of cellulose degradation. Annu Rev Microbiol 44:219–248CrossRefPubMedGoogle Scholar
  3. Bhandari S, Fujino T, Thammanagowda S, Zhang D, Xu F, Joshi CP (2006) Xylem-specific and tension stress-responsive coexpression of KORRIGAN endoglucanase and three secondary wall-associated cellulose synthase genes in aspen trees. Planta 224:828–837CrossRefPubMedGoogle Scholar
  4. Boyd D, Beckwith J (1990) The role of charged amino acids in the localization of secreted and membrane proteins. Cell 62:1031–1033CrossRefPubMedGoogle Scholar
  5. Brummell DA, Catala C, Lashbrook CC, Bennett AB (1997) A membrane-anchored E-type endo-1, 4-β-glucanase is localized on Golgi and plasma membranes of higher plants. Proc Natl Acad Sci 94:4794–4799CrossRefPubMedPubMedCentralGoogle Scholar
  6. Buchanan M (2011) Cellulose, stem strength and the Endo-(1, 4)-β-Glucanase gene family in Barley and Maize.  Ph. D. thesis, The University of Adelaide, Adelaide, pp 1–405Google Scholar
  7. Buchanan M, Burton RA, Dhugga KS, Rafalski AJ, Tingey SV, Shirley NJ, Fincher GB (2012) Endo-(1, 4)-β-Glucanase gene families in the grasses: temporal and spatial Co-transcription of orthologous genes. BMC Plant Biol 12:235CrossRefPubMedPubMedCentralGoogle Scholar
  8. Cantarel BL, Coutinho PM, Rancurel C, Bernard T, Lombard V, Henrissat B (2009) The Carbohydrate-Active EnZymes database (CAZy): an expert resource for glycogenomics. Nucleic Acids Res 37:D233–D238CrossRefPubMedGoogle Scholar
  9. Carmel L, Wolf YI, Rogozin IB, Koonin EV (2007) Three distinct modes of intron dynamics in the evolution of eukaryotes. Genome Res 17:1034–1044CrossRefPubMedPubMedCentralGoogle Scholar
  10. Castresana J (2002) Estimation of genetic distances from human and mouse introns. Genome Biol 3:7CrossRefGoogle Scholar
  11. Chen B (2010) Application of intron in bioinformatics researches and transgenic engineering. Chem Life 30:59–63Google Scholar
  12. Chen YJ, Sun CW (2010) Transgenic study of chloroplast translocon gene regulation in Arabidopsis thaliana. Bot Stud 51:147–153Google Scholar
  13. Clough SJ, Bent AF (1998) Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J 16:735–743CrossRefPubMedGoogle Scholar
  14. Cui K, He CY, Zhang JG, Duan AG, Zeng YF (2012) Temporal and spatial profiling of internode elongation-associated protein expression in rapidly growing culms of bamboo. J Proteome Res 11:2492–2507CrossRefPubMedGoogle Scholar
  15. Das M, Bhattacharya S, Pal A (2005) Generation and characterization of SCARs by cloning and sequencing of RAPD products: a strategy for species-specific marker development in bamboo. Ann Bot 95:835–841CrossRefPubMedPubMedCentralGoogle Scholar
  16. Delmer DP, Amor Y (1995) Cellulose biosynthesis. Plant Cell 7:987CrossRefPubMedPubMedCentralGoogle Scholar
  17. Deng G, Zeng G, Wang L (1988) Studies on cell division of intercalary meristem and intercalary growth of Phyllostachys pubescens and Phyllostachys bambusoides, Phyllostachys heteroclada Oliv. Acta Sci Nat Univ Norm Hunan 11:244–250Google Scholar
  18. Dong LN (2007) Studies on developmental anatomy of elongated growth about bamboo culms.  Master thesis, Nanjing Forestry University, Nanjing, pp 1–69Google Scholar
  19. Du LZ, Jing AW (2010) cDNA cloning and expression of Phyllostachys praecox Z.d.Chu et C.S.Chao cellulose synthase gene. Acta Agric Univ 32:0535–0540Google Scholar
  20. Fagard M, Desnos T, Desprez T, Goubet F, Refregier G, Mouille G, McCann M, Rayon C, Vernhettes S, Höfte H (2000) PROCUSTE1 encodes a cellulose synthase required for normal cell elongation specifically in roots and dark-grown hypocotyls of Arabidopsis. Plant Cell 12:2409–2423CrossRefPubMedPubMedCentralGoogle Scholar
  21. Feng JY (2010) Studies on primary thickening growth mechanism of Phyllostachys edulis shoot bud. Master thesis, Nanjing Forestry University, Nanjing, pp 1–65Google Scholar
  22. Gaut BS, Doebley JF (1997) DNA sequence evidence for the segmental allotetraploid origin of maize. Proc Natl Acad Sci 94:6809–6814CrossRefPubMedPubMedCentralGoogle Scholar
  23. Gazave E, Marqués-Bonet T, Fernando O, Charlesworth B, Navarro A (2007) Patterns and rates of intron divergence between humans and chimpanzees. Genome Biol 8:R21CrossRefPubMedPubMedCentralGoogle Scholar
  24. Grass Phylogeny Working Group, Barker NP, Clark LG, Davis JI, Duvall MR, Guala GF, Hsiao C, Kellogg EA, Peter Linder H, Mason-Gamer RJ, Mathews SY, Simmons MP, Soreng RJ, Spangler RE (2001) Phylogeny and subfamilial classification of the grasses (Poaceae). Ann Missouri Bot Garden 88: 373–457Google Scholar
  25. Gui YJ, Zhou Y, Wang Y, Wang S, Wang SY, Hu Y, Bo SP, Chen H, Zhou CP, Ma NX, Zhang TZ, Fan LJ (2010) Insights into the bamboo genome: syntenic relationships to rice and sorghum. J Integr Plant Biol 52:1008–1015CrossRefPubMedGoogle Scholar
  26. He SE (2009) cDNA library construction and molecular cloning of cellulose synthase gene (PeCesA12 and PeCesA11) from Moso bamboo.  Master thesis, Zhejiang Forestry University, Zhejiang, pp 1–46Google Scholar
  27. He CY, Cai K, Zhang JG, Duan AG, Zeng YF (2013) Next-generation sequencing-based mRNA and microRNA expression profiling analysis revealed pathways involved in the rapid growth of developing culms in Moso bamboo. BMC Plant Biol 13:119CrossRefPubMedPubMedCentralGoogle Scholar
  28. He MX, Wang JL, Qin H, Shui ZX, Zhu QL, Wu B, Tan FR, Pan K, Hu QC, Dai LC, Wang WG, Tang XY, Hu GQ (2014) Bamboo: a new source of carbohydrate for biorefinery. Carbohydr Polym 111:645–654CrossRefPubMedGoogle Scholar
  29. Henrissat B (1991) A classification of glycosyl hydrolases based on amino acid sequence similarities. Biochem J 280:309–316CrossRefPubMedPubMedCentralGoogle Scholar
  30. Henrissat B, Bairoch A (1993) New families in the classification of glycosyl hydrolases based on amino acid sequence similarities. Biochem J 293:781–788CrossRefPubMedPubMedCentralGoogle Scholar
  31. Henrissat B, Bairoch A (1996) Updating the sequence-based classification of glycosyl hydrolases. Biochem J 316:695–696CrossRefPubMedPubMedCentralGoogle Scholar
  32. Igea J, Juste J, Castresana J (2010) Novel intron markers to study the phylogeny of closely related mammalian species. BMC Evol Biol 10:369CrossRefPubMedPubMedCentralGoogle Scholar
  33. Jiang ZH (2002) World bamboo and rattan. LiaoNing Science and Technology Publishing House, LiaoNingGoogle Scholar
  34. Kay BK, Williamson MP, Sudol M (2000) The importance of being proline: the interaction of proline-rich motifs in signaling proteins with their cognate domains. FASEB J 14:231–241PubMedGoogle Scholar
  35. Kellogg EA (1998) Relationships of cereal crops and other grasses. Proc Natl Acad Sci 95:2005–2010CrossRefPubMedPubMedCentralGoogle Scholar
  36. Kellogg EA (2001) Evolutionary history of the grasses. Plant Physiol 125:1198–1205CrossRefPubMedPubMedCentralGoogle Scholar
  37. Kovi MR, Bai X, Mao D, Xing Y (2011) Impact of seasonal changes on spikelets per panicle, panicle length and plant height in rice (Oryza sativa L.). Euphytica 179:319–331CrossRefGoogle Scholar
  38. Lao X, Ji Azuma, Sakamoto M (2013) Two cytosolic aldolases show different expression patterns during shoot elongation in Moso bamboo, Phyllostachys pubescens Mazel. Physiol Plant 149:422–431PubMedGoogle Scholar
  39. Lee S, Jia MH, Jia Y, Liu G (2014) Tagging quantitative trait loci for heading date and plant height in important breeding parents of rice (Oryza sativa). Euphytica 197:191–200CrossRefGoogle Scholar
  40. Li ZL (1996) Plant tissue producer. Peking University Press, BeijingGoogle Scholar
  41. Li C, Qi L, Wang J, Wang Y, Shi S, Zhang S (2004) Cellulose synthase gene and cellulose biosynthesis in plants. Biotechnol Bull 2005:5–11Google Scholar
  42. Li YJ, Fu YR, Huang JG, Wu CA, Zheng CC (2011) Transcript profiling during the early development of the maize brace root via Solexa sequencing. FEBS J 278:156–166CrossRefPubMedGoogle Scholar
  43. Liu M, Qiao G, Jiang J, Yang H, Xie L, Xie J, Zhuo R (2012) Transcriptome sequencing and de novo analysis for ma bamboo (Dendrocalamus latiflorus Munro) using the Illumina platform. PLoS One 7(10):e46766CrossRefPubMedPubMedCentralGoogle Scholar
  44. Logacheva MD, Kasianov AS, Vinogradov DV, Samigullin TH, Gelfand MS, Makeev VJ, Penin AA (2011) De novo sequencing and characterization of floral transcriptome in two species of buckwheat (Fagopyrum). BMC Genom 12:30CrossRefGoogle Scholar
  45. Lv HK, Zheng J, Wang TY, Fu JJ, Huai JL, Min HW, Zhang X, Tian BH, Shi YS, Wang GY (2014) The maize d2003, a novel allele of VP8, is required for maize internode elongation. Plant Mol Biol 84:243–257CrossRefPubMedGoogle Scholar
  46. Magel E, Kruse S, Lütje G, Liese W (2005) Soluble carbohydrates and acid invertases involved in the rapid growth of developing culms in Sasa palmata (Bean). Camus Bamboo Sci Cult 19:23–29Google Scholar
  47. Maloney VJ, Samuels AL, Mansfield SD (2012) The endo-1, 4-β-glucanase Korrigan exhibits functional conservation between gymnosperms and angiosperms and is required for proper cell wall formation in gymnosperms. New Phytol 193:1076–1087CrossRefPubMedGoogle Scholar
  48. Mølhøj M, Johansen B, Ulvskov P, Borkhardt B (2001) Expression of a membrane-anchored endo-1, 4-β-glucanase from Brassica napus, orthologous to KOR from Arabidopsis thaliana, is inversely correlated to elongation in light-grown plants. Plant Mol Biol 45:93–105CrossRefPubMedGoogle Scholar
  49. Nicol F, His I, Jauneau A, Vernhettes S, Canut H, Höfte H (1998) A plasma membrane-bound putative endo-1, 4-β-d-glucanase is required for normal wall assembly and cell elongation in Arabidopsis. EMBO J 17:5563–5576CrossRefPubMedPubMedCentralGoogle Scholar
  50. Pagant S, Bichet A, Sugimoto K, Lerouxel O, Desprez T, McCann M, Lerouge P, Vernhettes S, Höfte H (2002) KOBITO1 encodes a novel plasma membrane protein necessary for normal synthesis of cellulose during cell expansion in Arabidopsis. Plant Cell 14:2001–2013CrossRefPubMedPubMedCentralGoogle Scholar
  51. Paterson A, Bowers J, Chapman B (2004) Ancient polyploidization predating divergence of the cereals, and its consequences for comparative genomics. Proc Natl Acad Sci USA 101:9903–9908CrossRefPubMedPubMedCentralGoogle Scholar
  52. Paterson AH, Bowers JE, Bruggmann R, Dubchak I, Grimwood J, Gundlach H, Haberer G, Hellsten U, Mitros T, Poliakov A, Schmutz J, Spannagl M, Tang HB, Wang XY, Wicker T, Bharti AK, Chapman J, Feltus FA, Gowik U, Grigoriev IV, Lyons E, Maher CA, Martis M, Narechania A, Otillar RP, Penning BW, Salamov AA, Wang Y, Zhang LF, Carpita NC, Freeling M, Gingle AR, Hash CT, Keller B, Klein P, Kresovich S, McCann MC, Ming R, Peterson DG, Rahman M, Ware D, Westhoff P, Mayer KFX, Messing J, Rokhsar DS (2009) The Sorghum bicolor genome and the diversification of grasses. Nature 457:551–556CrossRefPubMedGoogle Scholar
  53. Peng ZH, Lu TT, Li LB, Liu XH, Gao ZM, Hu T, Yang XW, Feng Q, Guan JP, Weng QJ, Fan DL, Zhu CR, Lu Y, Han B, Jiang ZH (2010) Genome-wide characterization of the biggest grass, bamboo, based on 10,608 putative full-length cDNA sequences. BMC Plant Biol 10:116CrossRefPubMedPubMedCentralGoogle Scholar
  54. Peng ZH, Lu Y, Li LB, Zhao Q, Feng Q, Gao ZM, Lu HY, Hu T, Yao N, Liu KY, Li Y, Fan DL, Guo YL, Li WJ, Lu YQ, Weng QJ, Zhou CC, Zhang L, Huang T, Zhao Y, Zhu CR, Liu XG, Yang XW, Wang T, Miao K, Zhuang CY, Cao XL, Tang WL, Liu GS, Liu YL, Chen J, Liu ZJ, Yuan LC, Liu ZH, Huang XH, Lu TT, Fei BH, Ning ZM, Han B, Jiang ZH (2013a) The draft genome of the fast-growing non-timber forest species moso bamboo (Phyllostachys heterocycla). Nat Genet 45:456–461CrossRefPubMedGoogle Scholar
  55. Peng ZH, Zhang CL, Zhang Y, Hu T, Mu SH, Li XP, Gao J (2013b) Transcriptome sequencing and analysis of the fast growing shoots of moso bamboo (Phyllostachys edulis). PLoS One 8(11):e78944CrossRefPubMedPubMedCentralGoogle Scholar
  56. Rodova M, Islam MR, Peterson KR, Calvet JP (2003) Remarkable sequence conservation of the last intron in the PKD1 gene. Mol Biol Evol 20:1669–1674CrossRefPubMedGoogle Scholar
  57. Salse J, Bolot S, Throude M, Jouffe V, Piegu B, Quraishi UM, Calcagno T, Cooke R, Delseny M, Feuillet C (2008) Identification and characterization of shared duplications between rice and wheat provide new insight into grass genome evolution. Plant Cell 20:11–24CrossRefPubMedPubMedCentralGoogle Scholar
  58. Sami AJ, Shakoori A (2008) Biochemical characterization of endo-1, 4-β-D-glucanase activity of a green insect pest Aulacophora foveicollis (Lucas). Life Sci J 5(2):30–36Google Scholar
  59. Sato S, Kato T, Kakegawa K, Ishii T, Liu YG, Awano T, Takabe K, Nishiyama Y, Kuga S, Sato S, Nakamura Y, Tabata S, Shibata D (2001) Role of the putative membrane-bound endo-1, 4-β-glucanase KORRIGAN in cell elongation and cellulose synthesis in Arabidopsis thaliana. Plant Cell Physiol 42:251–263CrossRefPubMedGoogle Scholar
  60. Scurlock J, Dayton D, Hames B (2000) Bamboo: an overlooked biomass resource? Biomass Bioenergy 19:229–244CrossRefGoogle Scholar
  61. Shani Z, Dekel M, Tsabary G, Goren R, Shoseyov O (2004) Growth enhancement of transgenic poplar plants by overexpression of Arabidopsis thaliana endo-1, 4–β-glucanase (cel1). Mol Breed 14:321–330CrossRefGoogle Scholar
  62. Shani Z, Dekel M, Roiz L, Horowitz M, Kolosovski N, Lapidot S, Alkan S, Koltai H, Tsabary G, Goren R, Shoseyov O (2006) Expression of endo-1, 4-β-glucanase (cel1) in Arabidopsis thaliana is associated with plant growth, xylem development and cell wall thickening. Plant Cell Rep 25:1067–1074CrossRefPubMedGoogle Scholar
  63. Sharma R, Gupta P, Sharma V, Sood A, Mohapatra T, Ahuja PS (2008) Evaluation of rice and sugarcane SSR markers for phylogenetic and genetic diversity analyses in bamboo. Genome 51:91–103CrossRefPubMedGoogle Scholar
  64. Soria-Carrasco V, Talavera G, Igea J, Castresana J (2007) The K tree score: quantification of differences in the relative branch length and topology of phylogenetic trees. Bioinformatics 23:2954–2956CrossRefPubMedGoogle Scholar
  65. Sungkaew S, Stapleton CM, Salamin N, Hodkinson TR (2009) Non-monophyly of the woody bamboos (Bambuseae; Poaceae): a multi-gene region phylogenetic analysis of Bambusoideae ss. J Plant Res 122:95–108CrossRefPubMedGoogle Scholar
  66. Swigoňová Z, Lai J, Ma J, Ramakrishna W, Llaca V, Bennetzen JL, Messing J (2004) Close split of sorghum and maize genome progenitors. Genome Res 14:1916–1923CrossRefPubMedPubMedCentralGoogle Scholar
  67. Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28:2731–2739CrossRefPubMedPubMedCentralGoogle Scholar
  68. Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882CrossRefPubMedPubMedCentralGoogle Scholar
  69. Ueda K (1960) Studies on the physiology of Bamboo, with reference to practical application. Reference data No. 34Google Scholar
  70. Urbanowicz BR et al (2007) Structural organization and a standardized nomenclature for plant endo-1, 4-β-glucanases (cellulases) of glycosyl hydrolase family 9. Plant Physiol 144:1693–1696CrossRefPubMedPubMedCentralGoogle Scholar
  71. Wang Z, Gerstein M, Snyder M (2009) RNA-Seq: a revolutionary tool for transcriptomics. Nat Rev Genet 10:57–63CrossRefPubMedPubMedCentralGoogle Scholar
  72. Wei WL, Qi XQ, Wang LH, Zhang YX, Hua W, Li DH, Lv HX, Zhang XR (2011) Characterization of the sesame (Sesamum indicum L.) global transcriptome using Illumina paired-end sequencing and development of EST-SSR markers. BMC Genom 12:451CrossRefGoogle Scholar
  73. Wu LS, Jin XC, Yang YC, Huang HS, Chen ST, Yao WF, Yao FP (2010) cDNA cloning and expression analysis of Phyllostachys edulis beta-1, 4-glycosidase gene. Biotechnol Bull 3:026Google Scholar
  74. Wu T, Shen YY, Zheng M, Yang CY, Chen YL, Feng ZM, Liu X, Liu SJ, Chen ZJ, Lei CL, Wang JL, Jiang L, Wan JM (2014) Gene SGL, encoding a kinesin-like protein with transactivation activity, is involved in grain length and plant height in rice. Plant Cell Rep 33:235–244CrossRefPubMedGoogle Scholar
  75. Xiong W, Ding Z, Li Y (1980) Intercalary meristem and internodal elongation of bamboo plants. Scientia Silvae Sinicae 16:81–89Google Scholar
  76. Yu Y, Wang H, Lu F, Tian G, Lin J (2014) Bamboo fibers for composite applications: a mechanical and morphological investigation. J Mater Sci 49:2559–2566CrossRefGoogle Scholar
  77. Zhang YQ, Liang JH, Li BX (2007) Application of β-glycosidase to cellulose bio-degradation. J Tianjin Univ 3:15Google Scholar
  78. Zhang YJ, Ma PF, Li DZ (2011) High-throughput sequencing of six bamboo chloroplast genomes: phylogenetic implications for temperate woody bamboos (Poaceae: Bambusoideae). PLoS One 6:e20596CrossRefPubMedPubMedCentralGoogle Scholar
  79. Zhou HL, He SJ, Cao YR, Chen T, Du BX, Chu CC, Zhang JS, Chen SY (2006) OsGLU1, a putative membrane-bound endo-1, 4-β-D-glucanase from rice, affects plant internode elongation. Plant Mol Biol 60:137–151CrossRefPubMedGoogle Scholar
  80. Zhou MB, Yang P, Gao PJ, Tang DQ (2011) Identification of differentially expressed sequence tags in rapidly elongating Phyllostachys pubescens internodes by suppressive subtractive hybridization. Plant Molecular Biology Reporter 29:224–231CrossRefGoogle Scholar
  81. Zuo J, Niu QW, Nishizawa N, Wu Y, Kost B, Chua NH (2000) KORRIGAN, an Arabidopsis endo-1, 4-β-glucanase, localizes to the cell plate by polarized targeting and is essential for cytokinesis. Plant Cell 12:1137–1152PubMedPubMedCentralGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Ming-Bing Zhou
    • 1
  • Ying Zheng
    • 1
  • Zhi-Gang Liu
    • 1
  • Xiang-Wan Xia
    • 1
  • Ding-Qin Tang
    • 1
  • Ying Fu
    • 1
  • Ming Chen
    • 1
  1. 1.Key Lab for Modern Silvicultural Technology of Zhejiang ProvinceZhejiang A & F UniversityLinanChina

Personalised recommendations