, Volume 30, Issue 4, pp 1245–1258 | Cite as

Climate variability, tree increment patterns and ENSO-related carbon sequestration reduction of the tropical dry forest species Loxopterygium huasango of Southern Ecuador

Original Article


Key message

Striking hydro-climatic differences of 2 years (wet; dry) dramatically control the increment pattern of L. huasango in varying extent, even causing a “growth collapse” during the La Niña drought 2010/2011.


We present the first multi-year long time series of local climate data in the seasonally dry tropical forest in Southern Ecuador and related growth dynamics of Loxopterygium huasango, a deciduous tree species. Local climate was investigated by installing an automatically weather station in 2007 and the daily tree growth variability was measured with high-resolution point dendrometers. The climatic impact on growth behaviour was evaluated. Hydro-climatic variables, like precipitation and relative humidity, were the most important factors for controlling tree growth. Changes in rainwater input affected radial increment rates and daily amplitudes of stem diameter variations within the study period from 2009 to 2013. El Niño Southern Oscillation (ENSO) related variations of tropical Pacific Ocean sea surface temperatures influenced the trees’ increment rates. Average radial increments showed high inter-annual (up to 7.89 mm) and inter-individual (up to 3.88 mm) variations. Daily amplitudes of stem diameter variations differed strongly between the two extreme years 2009 (wet) and 2011 (dry). Contrary to 2009, the La Niña drought in 2011 caused a rapid reduction of the daily amplitudes, indicating a total cessation (‘growth collapse’) of stem increment under ENSO-related drought conditions and demonstrating the high impact of climatic extreme events on carbon sequestration of the dry tropical forest ecosystem.


Climate variability Dendroecology Dendrometer Ecuador La Niña drought Seasonally dry tropical forest 



SSp and FV acknowledge Oswaldo Ganzhi and Volker Raffelsbauer for field work support. SSp and FV also thank Cathrin Meinardus for constructive and fruitful discussions. We also thank Stephan Adler for preparing the map. This study was supported by the German Research Foundation (DFG) by funding the project BR 1895/14 (FOR 816) and BR 1895/23 (PAK 823). DP acknowledges support by the German Academic Exchange Service (DAAD). We also thank Naturaleza y Cultura Internacional (NCI, Loja, Ecuador) for their help in accessing the Laipuna Nature Reserve. The authors would like to thank the reviewers for their invaluable suggestions.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. Agrawal AA (1996a) Seed germination of Loxopterygium guasango, a threatened tree of coastal Northwestern South America. Trop Ecol 37:273–276Google Scholar
  2. Agrawal AA (1996b) Reforestation in Ecuador’s dry forest. Desert Plants 12:12–14Google Scholar
  3. Appelhans T (2013) Metvurst: METeorological visualisation utilities using R for science and teaching. Accessed 31 Aug 2015
  4. Bazo J, de las Nieves Lorenzo M, Porfirio da Rocha R (2013) Relationship between monthly rainfall in NW Peru and tropical sea surface temperature. Adv Meteorol. doi: 10.1155/2013/152875
  5. Bendix J, Trachte K, Palacopis E, Rollenbeck R, Göttlicher D, Nauss T, Bendix A (2011) El Niño meets La Niña—anomalous rainfall patterns in the “Traditional” El Niño region of Southern Ecuador. Erdkd 65:151–167CrossRefGoogle Scholar
  6. Biondi F, Hartsough P (2010) Using automated point dendrometers to analyze tropical treeline stem growth at Nevado de Colima, Mexico. Sens 10(6):5827–5844CrossRefGoogle Scholar
  7. Biondi F, Rossi S (2014) Plant-water relationships in the Great Basin Desert of North America derived from Pinus monophylla hourly dendrometer records. Intern J Biometeorol. doi: 10.1007/s00484-0-014-0907-4 Google Scholar
  8. Biondi F, Hartsough P, Estrada I (2005) Daily weather and tree growth at the tropical treeline of North America. Arctic Antarct Alp Res 37:16–24CrossRefGoogle Scholar
  9. Boening C, Willis JK, Landerer FW, Nerem RS, Fasullo J (2012) The 2011 La Niña: so strong, the oceans fell. Geophys Res Lett 39:L19602Google Scholar
  10. Boninsegna J, Argollo J, Aravena J, Brichivich J, Christie D, Ferrero M, Lara A, Le Quesne C, Luckmann B, Masiokas M, Morales M, Oliveiera J, Roig F, Srur A, Villalba R (2009) Dendroclimatological reconstructions in South America: a review. Paleogeogr Paleoclimatol Paleoecol 281:210–228CrossRefGoogle Scholar
  11. Borchert R (1994) Water status and development of tropical trees during seasonal drought. Trees 8:115–125CrossRefGoogle Scholar
  12. Borchert R, Renner SR, Calle Z, Navarrete D, Tye A, Gautier L, Spichiger R, von Hildebrand P (2005) Photoperiodic induction of synchronous flowering near the Equator. Nature 433:627–629CrossRefPubMedGoogle Scholar
  13. Bräuning A, von Schnakenburg P, Volland-Voigt F, Peters T (2008) Seasonal growth dynamics and its climate forcing in a tropical mountain rain forest in southern Ecuador. Tree Rings Archaeol Climatol Ecol 6:27–30Google Scholar
  14. Bräuning A, Volland-Voigt F, Burchardt I, Ganzhi O, Nauss T, Peters T (2009a) Climatic control of radial growth of Cedrela montana in a humid mountain rain forest in southern Ecuador. Erdkd 63:337–345CrossRefGoogle Scholar
  15. Bräuning A, Volland-Voigt F, von Schnakenburg P (2009b) Jahrringe als Ausdruck von Klimabedingungen und Lebensform: wie wachsen Tropenbäume? Biol unserer Zeit 39:124–132CrossRefGoogle Scholar
  16. Brienen R, Lebrija-Trejos E, Zuidema P, Marinez-Ramos M (2010) Climate–growth analysis for Mexican dry forest tree shows strong impact of sea surface temperatures and predicts future growth declines. Glob Change Biol 16:2001–2012CrossRefGoogle Scholar
  17. Bullock SH, Mooney HA, Medina E (1995) Seasonally dry tropical forests, 1st edn. Cambridge University Press, Cambridge Books, Cambridge. doi: 10.1017/CBO9780511753398 CrossRefGoogle Scholar
  18. Bunn A (2008) A dendrochronology program library in R. Dendrochronologia 26:115–124CrossRefGoogle Scholar
  19. Burnham RJ, Carranco N (2004) Miocene winged fruits of Loxopterygium (Anacardiaceae) from the ecuadorian Andes. Am J Bot 91:1767–1773CrossRefPubMedGoogle Scholar
  20. Cardoso F, Marques R, Botosso P, Marques M (2012) Stem growth and phenology of two tropical trees in contrasting soil conditions. Plant Soil 354:269–281CrossRefGoogle Scholar
  21. Clark DA, Clark DB (1994) Climate-induced annual variation in canopy tree growth in a Costa Rican tropical rain forest. J Ecol 82(4):865–872CrossRefGoogle Scholar
  22. Cotrill DA (2012) Seasonal climate summery southern hemisphere (spring 2011): La Niña returns. Aust Meteorol Oceanograph J 62:179–192Google Scholar
  23. Deslauriers A, Rossi S, Anfodillo T (2007) Dendrometer and intraannual tree growth: what kind of information can be inferred? Dendrochronologia 25:113–124CrossRefGoogle Scholar
  24. Do FC, Goudiaby VA, Gimenez O, Diagne AL, Diouf M, Rocheteau A, Akpo LE (2005) Environmental influence on canopy phenology in the dry tropics. Forest Ecol Manag 215:319–328CrossRefGoogle Scholar
  25. Drew DM, Downes GD (2009) The use of precision dendrometers in research on daily stem size and wood property variation: a review. Denrochronologia 27:159–172CrossRefGoogle Scholar
  26. Drew DM, Richards AE, Cook GD, Downes GM, Gill W, Baker PJ (2014) The number of days on which increment occurs is the primary determinant of annual ring width in Callitris intratropica. Trees 28:31–40CrossRefGoogle Scholar
  27. Eamus D (1999) Ecophysiological traits of deciduous and evergreen woody species in the seasonally dry tropics. Trees 14:11–16Google Scholar
  28. Estrada-Medina H, Santiago LS, Graham RC, Allan MF, Jimenez-Osornio JJ (2013) Source water, phenology and growth of two tropical dry forest tree species growing on shallow karst soils. Trees 27:1297–1307CrossRefGoogle Scholar
  29. Fichtler E, Trouet V, Beeckman H, Coppin P, Worbes M (2004) Climatic signals in tree rings of Burkea africana and Pterocarpus angolensis from semiarid forests in Namibia. Trees 18:442–451CrossRefGoogle Scholar
  30. Garreaud RD, Vuille M, Compagnucci R, Marengo J (2009) Present-day South American climate. Palaeogeogr Palaeoclimatol Palaeoecol 281:180–195CrossRefGoogle Scholar
  31. Gebrekirstos A, Mitlöhner R, Teketay D, Worbes M (2008) Climate-growth relationships of the dominant tree species from semi-arid savanna woodland in Ethiopia. Trees 22:631–641CrossRefGoogle Scholar
  32. Gebrekirstos A, Bräuning A, Sass-Klaassen U, Mbow C (2014) Opportunities and applications of dendrochronology in Africa. Curr Opin Env Sustain 6(1):48–53CrossRefGoogle Scholar
  33. Gonzáles Estrella JE, Garcia Riofrio JC, Correa Conde J (2005) Especies forestales del bosqoue seco “Cerro Negro-Cazaderos” Zapotillo—Puyango—Loja Ecuador. Fundación Ecológica Arcoiris, LojaGoogle Scholar
  34. Grogan J, Schulze M (2012) The impact of annual and seasonal rainfall patterns on growth and phenology of emergent tree species in Southeastern Amazonia, Brazil. Biotropica 44(3):331–340CrossRefGoogle Scholar
  35. Heidelberger M, Rao C (1966) Immunchemical properties of hualtaco gum. Immunology 10(6):543–548PubMedPubMedCentralGoogle Scholar
  36. Hoyos N, Escobar J, Restrepo JC, Arango AM, Ortiz JC (2013) Impact of the 2010–2011 La Niña phenomenon in Columbia, South America: the human toll of an extreme weather event. Appl Geogr 39:16–25 CrossRefGoogle Scholar
  37. Jiang Y, Wang B-Q, Dong M-U, Huang Y-M, Wang M-C, Wang B (2015) Response of daily stem radial growth of Platycladus orientalis to environmental factors in a semi-arid area of North China. Trees 29:87–96CrossRefGoogle Scholar
  38. Krepkowski J, Bräuning A, Gebrekirstos A, Strobl S (2011) Cambial growth dynamics and climatic control of different tree life forms in tropical mountain forest in Ethiopia. Trees 25:59–70CrossRefGoogle Scholar
  39. Krepkowski J, Gebrekirstos A, Shibistova O, Bräuning A (2013) Stable carbon isotope labeling reveals different carry-over effects between functional types of tropical trees in an Ethiopian mountain forest. New Phytol 199:431–440CrossRefGoogle Scholar
  40. Lagos P, Silva Y, Nickl E, Mosquera K (2008) El Niño-related precipitation variability in Perú. Adv Geosci 14:231–237CrossRefGoogle Scholar
  41. Linares-Palomino R, Ponce-Alvarez SI (2005) Tree community patterns on seasonally dry forests in the Cerros de Amotape Cordillera, Tumbes, Peru. Forest Ecol Manag 209:261–272CrossRefGoogle Scholar
  42. Linares-Palomino R, Ponce-Alvarez SI (2009) Structural patterns and floristics of a seasonally dry forest in Reserva Ecológica Chaparri, Lambayeque, Peru. Tropic Ecol 50:305–314Google Scholar
  43. Linares-Palomino R, Kvist LP, Aguirre-Mendoza Z, Gonzales-Inca C (2010) Diversity and endemism of woody plant species in the Equatorial Pacific seasonally dry forest. Biodivers Conserv 19:169–185CrossRefGoogle Scholar
  44. Maestre F, Quero J, Gotelli N, Escudero A, Ochoa V, Delgado-Baquerizo M, García Gómez M, Bowker M, Soliveres S, Escolar C, García-Palacios P, Berdugo M, Valencia E, Gozalo B, Gallardo A, Aguilera L, Arredondo T, Blones J, Boeken B, Bran D, Conceição A, Cabrera O, Chaieb M, Derak M, Eldridge D, Espinosa C, Florentino A, Gaitán J, Gatica G, Ghiloufi W, Gómez-González S, Gutiérrez R, Hernández R, Huang X, Huber-Sannwald E, Jankju M, Miriti M, Monerris J, Mau R, Morici E, Naseri K, Ospina A, Polo V, Prina A, Pucheta E, Ramírez-Collantes D, Romão R, Tighe M, Torres-Díaz C, Val J, Veiga J, Wang D, Zaady E (2012) Plant species richness and ecosystem multifunctionality in global drylands. Science 335:214–218CrossRefPubMedPubMedCentralGoogle Scholar
  45. Mayle FE (2004) Assessment of the Neotropical dry forest refugia hypothesis in the light of palaeoecological data and vegetation model simulations. J Q Sci 19:713–720CrossRefGoogle Scholar
  46. Méndez-Alonso R, Pineda-García F, Paz H, Rosell JA, Olson JC (2013) Leaf phenology is associated with soil water availability and xylem traits in a tropical dry forest. Trees 27:745–754CrossRefGoogle Scholar
  47. Ministerio de Agricultura y Ganaderia (1984) Macara—Mapa de Suelos, QuitoGoogle Scholar
  48. Ministerio de Recursos Naturales y Energeticos (1982) National geological map of the republic of Ecuador, QuitoGoogle Scholar
  49. Pennington RT, Lewis G, Ratter JA (2006) Neotropical savannas and dry forests: plant diversity. Biogeography and observation. CRC Press, FloridaCrossRefGoogle Scholar
  50. Pompa-García M, Miranda-Aragón L, Aguirre-Salado CA (2015) Tree growth response to ENSO in Durango, Mexico. Int J Biometerol 59:89–97CrossRefGoogle Scholar
  51. Pucha Cofrep D, Peters T, Bräuning A (2015) Wet season precipitation during the past 120 years reconstructed from tree rings of a tropical dry forest in Southern Ecuador. Global Planet Change 133:65–78CrossRefGoogle Scholar
  52. Reich P, Borchert R (1982) Phenology and ecophysiology of the tropical tree, Tabebuia neochrysantha (Bignoniaceae). Ecology 63:294–299CrossRefGoogle Scholar
  53. Rodríguez R, Mabres A, Luckman B, Evans M, Masiokas M, Ektvedt TM (2005) “El Niño” events recorded in dry-forest species of the lowlands of northwest Peru. Dendrochronologia 22:181–186CrossRefGoogle Scholar
  54. Rozendaal DMA, Zuidema PA (2011) Dendroecology in the tropics: a review. Trees 25:3–16CrossRefGoogle Scholar
  55. Särkinen T, Pennington RT, Lavin M, Simon MF, Hughes CE (2012) Evolutionary islands in the Andes: persistence and isolation explain high endemism in Andes dry tropical forests. J Biogeogr 39:884–900CrossRefGoogle Scholar
  56. Sass-Klaassen U, Couralet C, Sahle Y, Sterck F (2008) Juniper from Ethiopia contains a large-scale precipitation signal. Int J Plant Sci 169(8):1057–1065CrossRefGoogle Scholar
  57. Sayer EJ, Newbery DM (2003) The role of tree size in the leafing phenology of seasonally dry tropical forest in Belize, Central America. J Trop Ecol 19:539–548CrossRefGoogle Scholar
  58. Schöngart J, Junk W, Piedade M, Ayres J, Hüttermann A, Worbes M (2004) Teleconnection between tree growth in the Amazonian floodplains and El-Niño-Southern Oscillation effect. Glob Change Biol 10:683–692CrossRefGoogle Scholar
  59. Steppe K, Sterck F, Deslauries A (2015) Diel growth dynamics in tree stems: linking anatomy and ecophysiology. Trends Plant Sci. doi: 10.1016/j.tplants.2015.03.015 Google Scholar
  60. Takahashi K (2004) The atmospheric circulation associated with extreme rainfall events in Piura, Peru, during the 1997–1998 and 2002 El Niño events. Ann Geophys 22:3917–3926CrossRefGoogle Scholar
  61. Tobin S (2012) Seasonal climate summary southern hemisphere (winter 2011): a dry season in the lull of La Niña events. Aust Meteorol Oceanograph J 62:97–110Google Scholar
  62. Tobin S, Skinner TCL (2012) Seasonal climate summary southern hemisphere (autumn 2011): one of the strongest La Niña events on record begins to decline. Aust Meteorol Oceanograph J 62:39–50Google Scholar
  63. Trenberth KE (1997) The definition of El Niño. B Am Meteorol Soc 78:2771–2777CrossRefGoogle Scholar
  64. Trouet V, Coppin P, Beeckman H (2006) Annual growth ring patterns in Brachystegia spiciformis reveal influence of precipitation on tree growth. Biotropica 38:375–382CrossRefGoogle Scholar
  65. United States Department of Agriculture, Natural Resources Conservation Service (1999) Soil Taxonomy: a basic system of soil classification for making and interpreting soil surveys. Government Printing Office Washington, WashingtonGoogle Scholar
  66. Valdez-Hernández M, Andrade J, Jackson P, Rebolledo-Vieyra M (2010) Phenology of five tree species of a tropical forest in Yucatan, Mexico: effects of environmental and physiological factors. Plant Soil 329:144–171CrossRefGoogle Scholar
  67. Valencia R, Cerón C, Palacios W, Sierra R. (1999) Las Formaciones naturales de la Sierra del Ecuador. In: Sierra R (edn) Propuesta preliminar de un sistema de clasificación de vegetación para el Ecuador Continental. Proyecto INEFAN/GEF y Ecociencia Quito-Ecuador, pp 79–108Google Scholar
  68. Volland-Voigt F, Bräuning A, Ganzhi O, Peters T, Maza H (2011) Radial stem variations of Tabebuia chrysantha (Bignoniaceae) in different tropical forest ecosystems of southern Ecuador. Trees 25:39–48CrossRefGoogle Scholar
  69. Vuille M, Bradley RS (2000) Mean annual temperature trends and their vertical structure in the tropical Andes. Geophys Res Lett 27:3885–3888CrossRefGoogle Scholar
  70. Vuille M, Bradley RS, Keimig F (2000) Climate variability in the Andes of Ecuador and its relation to tropical Pacific and Atlantic sea surface temperature anomalies. J Climate 13:2520–2535CrossRefGoogle Scholar
  71. Wagner F, Rossi V, Aubry-Kientz M, Bonal D, Dalitz H (2014) Pan-tropical analysis of climate effects on seasonal tree growth. PLoS ONE 9(3):e92337. doi: 10.1371/journal.pone.0092337 CrossRefPubMedPubMedCentralGoogle Scholar
  72. Wang Z, Yang B, Deslauriers A, Bräuning A (2014) Intra-annual stem radial increment response of Qilian juniper to temperature and precipitation along an altitudinal gradient in northwestern China. Trees 29:25–34CrossRefGoogle Scholar
  73. Williams RJ, Myers BA, Muller WJ, Duff GA, Eamus D (1997) Leaf phenology of woody species in a north Australian tropical savanna. Ecology 78:2542–2558CrossRefGoogle Scholar
  74. Wils G, Sass-Klassen U, Eshetu Z, Bräuning A, Gebrekirstos A, Couralet C, Robertson I, Touchan R, Koprowski M, Conway D, Briffa K, Beeckman H (2011) Dendrochronology in the dry tropics: the Ethiopian case. Trees 25:345–354CrossRefGoogle Scholar
  75. Wimmer R, Downes GM, Evans R (2002) High resolution analysis of radial growth and wood density in Eucalyptus nitens, grown under different irrigation regimes. Ann For Sci 59:519–524CrossRefGoogle Scholar
  76. Worbes M (1999) Annual growth rings, rainfall-dependent growth and long-term growth pattern of tropical trees from Caparo Forest Reserve in Venezuela. J Ecol 87:391–403CrossRefGoogle Scholar
  77. Worbes M (2002) One hundred years of tree-ring research in the tropics: a brief history and an outlook to future challenges. Dendrochronologia 20:217–231CrossRefGoogle Scholar
  78. Zalamea M, González G (2008) Leaffall phenology in a subtropical wet forest in Puerto Rico: from species to community patterns. Biotropica 40:295–304CrossRefGoogle Scholar
  79. Zanne AE, Lopez-Gonzalez G, Coomes DA, Ilic J, Jansen S, Lewis SL, Miller RB, Swenson NG, Wiemann MC, Chave J (2009) Global wood density database. Dryad. Identifier:

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Susanne Spannl
    • 1
  • Franziska Volland
    • 1
  • Darwin Pucha
    • 1
    • 2
  • Thorsten Peters
    • 1
  • Eduardo Cueva
    • 3
  • Achim Bräuning
    • 1
  1. 1.Institute of GeographyFriedrich-Alexander-University of Erlangen-NurembergErlangenGermany
  2. 2.Carrera de Ingeniería Forestal, Ciudadela Universitaria Guillermo Falconí Espinosa “La Argelia”Universidad Nacional de LojaLojaEcuador
  3. 3.Naturaleza y Cultura InternacionalLojaEcuador

Personalised recommendations