, Volume 30, Issue 1, pp 35–45 | Cite as

How are anatomical and hydraulic features of the mangroves Avicennia marina and Rhizophora mucronata influenced by siltation?

  • Hannes De DeurwaerderEmail author
  • J. A. Okello
  • N. Koedam
  • N. Schmitz
  • K. Steppe
Original Article
Part of the following topical collections:
  1. Long Distance Transport: Phloem and Xylem


Key message

This article provides significant data in the debate on whether siltation might have a negative impact on the hydraulic functioning of two widespread mangrove tree species Avicennia marina and Rhizophora mucronata.


Elevated sediment addition, or siltation, within mangrove ecosystems is considered as being negative for trees and saplings, resulting in stress and higher mortality rates. However, little is known about how siltation influences the hydraulic functioning of mangrove trees. Comparing two mangrove tree species (Avicennia marina Vierh. Forsk. and Rhizophora mucronata Lam.) from low and high-siltation plots led to the detection of anatomical and morphological differences and tendencies. Adaptations to high siltation were found to be either mutual among both species, e.g., significant smaller single leaf area (p A.marina  = 0.058, F1.38 = 3.8; p R.mucronata  = 0.005, F1.38 = 8.7; n = 20 × 20) and a tendency towards smaller stomatal areas (p A.marina  = 0.131, F1.8 = 2.8; p R.mucronata  = 0.185, F1.8 = 2.1, n = 5 × 60), or species-specific trends for A. marina, such as higher phloem band/growth layer ratios (p = 0.101, F1.8 = 3.4, n = 5 × 3) and stomatal density (p = 0.052, F1.8 = 5.2, n = 5 × 4). All adaptations seemingly contributed to a comparable hydraulic conductivity independent of the degree of siltation. These findings indicate that silted trees level off fluctuations in their hydraulic performance as a survival mechanism to cope with this less favourable environment. Most of the trees’ structural adaptations to cope with siltation are similar to known drought stress-imposed adaptations.


Hydraulic conductivity Wood anatomy Stomata Leaf area Phloem band/growth layer ratio 



The authors are very grateful for the attribution of George Onduso and Eric Okuku, without whom the measurement campaign never would have succeeded. For all the help during the measurement campaign and laboratory work, we would like to thank Samuel Njoroge, Naftali Mukua, Oduor Nancy Awuor, Jan Van Den Bulcke and Piet Dekeyser. Soil analysis was performed by Sturcky Okumu and Oliver Ochola. For statistical support, the authors are grateful towards Rosanna Overholser (FIRE—Fostering Innovative Research based on Evidence—statistical consulting). We also want to thank Veerle De Schepper and Elisabeth M.R. Robert for commenting the M.Sc. text. For logistic support we like to thank Jared Bosire (Kenya Marine and Fisheries Research Institute, KMFRI), Hans Beeckman (Laboratory of Wood Biology and Xylarium, Royal Museum for Central Africa) and Joris Van Acker (Laboratory of Wood Technology—Woodlab, UGent). Additionally, the authors gratefully thank the 3 anonymous reviewers for their constructive comments.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. Abuodha PAW, Kairo JG (2001) Human-induced stresses on mangrove swamps along the Kenyan coast. Hydrobiologia 458:255–265. doi: 10.1023/a:1013130916811 CrossRefGoogle Scholar
  2. Alongi DM (2008) Mangrove forests: resilience, protection from tsunamis, and responses to global climate change. Estuar Coast Shelf Sci 76:1–13. doi: 10.1016/j.ecss.2007.08.024 CrossRefGoogle Scholar
  3. Angeles G, Lopez-Portillo J, Ortega-Escalona F (2002) Functional anatomy of the secondary xylem of roots of the mangrove Laguncularia racemosa (L.) Gaertn. (Combretaceae). Trees Struct Funct 16:338–345. doi: 10.1007/s00468-002-0171-9 CrossRefGoogle Scholar
  4. Anyia AO, Herzog H (2004) Water-use efficiency, leaf area and leaf gas exchange of cowpeas under mid-season drought. Eur J Agron 20:327–339. doi: 10.1016/s1161-0301(03)00038-8 CrossRefGoogle Scholar
  5. APHA (1998) Standard method for the examination of water and waste-water. 20th edn. American Public Health Association, Washington, DCGoogle Scholar
  6. Baas P, Werker E, Fahn A (1983) Some ecological trends in vessel characters. Iawa Bull 4:141–159CrossRefGoogle Scholar
  7. Ball MC (1988) Ecophysiology of mangroves. Trees Struct Funct 2:129–142CrossRefGoogle Scholar
  8. Brakel W (1982) Tidal patterns on the East African coast and their implications for the littoral biota. In: Proceedings of the symposium on the coastal and marine environment of the Red Sea, Gulf of Aden and tropical Western Indian Ocean, pp 403–418Google Scholar
  9. Brugnoli E, Lauteri M (1991) Effects of salinity on stomatal conductance, photosynthetic capacity, and carbon isotope discrimination of salt-tolerant (Gossypium hirsutum L.) and salt-sensitive (Phaseolus vulgaris L.) C3 non-halophytes. Plant Physiol 95:628–635. doi: 10.1104/pp.95.2.628 PubMedCentralCrossRefPubMedGoogle Scholar
  10. Burghardt M, Burghardt A, Gall J, Rosenberger C, Riederer M (2008) Ecophysiological adaptations of water relations of Teucrium chamaedrys L. to the hot and dry climate of xeric limestone sites in Franconia (Southern Germany). Flora 203:3–13. doi: 10.1016/j.flora.2007.11.003 CrossRefGoogle Scholar
  11. Carr DJ (2000) On the supposed changes in stomatal frequency and size with height of leaf insertion. Ann Bot 86:911–912. doi: 10.1006/anbo.2000.1258 CrossRefGoogle Scholar
  12. Castañeda-Moya E, Twilley RR, Rivera-Monroy VH, Zhang K, Davis SE III, Ross M (2010) Sediment and nutrient deposition associated with Hurricane Wilma in mangroves of the Florida Coastal Everglades. Estuar Coasts 33:45–58CrossRefGoogle Scholar
  13. Choat B et al (2011) Xylem traits mediate a trade-off between resistance to freeze-thaw-induced embolism and photosynthetic capacity in overwintering evergreens. New Phytol 191:996–1005. doi: 10.1111/j.1469-8137.2011.03772.x CrossRefPubMedGoogle Scholar
  14. Ellison JC (1998) Impacts of sediment burial on mangroves. Mar Pollut Bull 37:420–426CrossRefGoogle Scholar
  15. Franks PJ, Beerling DJ (2009) Maximum leaf conductance driven by CO2 effects on stomatal size and density over geologic time. Proc Natl Acad Sci USA 106:10343–10347. doi: 10.1073/pnas.0904209106 PubMedCentralCrossRefPubMedGoogle Scholar
  16. Franks PJ, Farquhar GD (2001) The effect of exogenous abscisic acid on stomatal development, stomatal mechanics, and leaf gas exchange in Tradescantia virginiana. Plant Physiol 125:935–942. doi: 10.1104/pp.125.2.935 PubMedCentralCrossRefPubMedGoogle Scholar
  17. Franks PJ, Drake PL, Beerling DJ (2009) Plasticity in maximum stomatal conductance constrained by negative correlation between stomatal size and density: an analysis using Eucalyptus globulus. Plant Cell Environ 32:1737–1748. doi: 10.1111/j.1365-3040.2009.002031.x CrossRefPubMedGoogle Scholar
  18. Furukawa K, Wolanski E, Mueller H (1997) Currents and sediment transport in mangrove forests. Estuar Coast Shelf Sci 44:301–310. doi: 10.1006/ecss.1996.0120 CrossRefGoogle Scholar
  19. Gartner H, Nievergelt D (2010) The core-microtome: a new tool for surface preparation on cores and time series analysis of varying cell parameters. Dendrochronologia 28:85–92. doi: 10.1016/j.dendro.2009.09.002 CrossRefGoogle Scholar
  20. Gordon DM (1987) Disturbance to mangroves in tropical-arid Western Australia: hypersalinity and restricted tidal exchange as factors leading to mortality/David M. Gordon. Technical series (Western Australia. Environmental Protection Authority); no. 12. Environmental Protection Authority, Perth. Accessed from
  21. Gu MM, Rom CR, Robbins JA, Oosterhuis DM (2007) Effect of water deficit on gas exchange, osmotic solutes, leaf abscission, and growth of four birch genotypes (Betula L.) under a controlled environment. HortScience 42:1383–1391Google Scholar
  22. Hameed M, Ashraf M (2008) Physiological and biochemical adaptations of Cynodon dactylon (L.) Pers. from the Salt Range (Pakistan) to salinity stress. Flora 203:683–694. doi: 10.1016/j.flora.2007.11.005 CrossRefGoogle Scholar
  23. Hao GY et al (2009) Hydraulic redistribution in dwarf Rhizophora mangle trees driven by interstitial soil water salinity gradients: impacts on hydraulic architecture and gas exchange. Tree Physiol 29:697–705. doi: 10.1093/treephys/tpp005 CrossRefPubMedGoogle Scholar
  24. Heckenberger U, Roggatz U, Schurr U (1998) Effect of drought stress on the cytological status in Ricinus communis. J Exp Bot 49:181–189. doi: 10.1093/jexbot/49.319.181 CrossRefGoogle Scholar
  25. Kathiresan K, Bingham BL (2001) Biology of mangroves and mangrove ecosystems. In: Southward AJ, Tyler PA, Young CM, Fuiman LA (eds) Advances in marine biology, vol 40. Advances in marine biology. pp 81–251. doi: 10.1016/s0065-2881(01)40003-4
  26. Krauss KW, Lovelock CE, McKee KL, Lopez-Hoffman L, Ewe SML, Sousa WP (2008) Environmental drivers in mangrove establishment and early development: a review. Aquat Bot 89:105–127. doi: 10.1016/j.aquabot.2007.12.014 CrossRefGoogle Scholar
  27. Lieth H, Berlekamp J, Fuest S, Riediger S (1999) Climate diagrams of the world. CD-series: climate and biosphere. Blackhuys Publishers, LeidenGoogle Scholar
  28. López-Portillo J, Ewers FW, Angeles G (2005) Sap salinity effects on xylem conductivity in two mangrove species. Plant, Cell Environ 28:1285–1292. doi: 10.1111/j.1365-3040.2005.01366.x CrossRefGoogle Scholar
  29. Lovelock CE, Ball MC, Choat B, Engelbrecht BMJ, Holbrook NM, Feller IC (2006) Linking physiological processes with mangrove forest structure: phosphorus deficiency limits canopy development, hydraulic conductivity and photosynthetic carbon gain in dwarf Rhizophora mangle. Plant, Cell Environ 29:793–802. doi: 10.1111/j.1365-3040.2005.01446.x CrossRefGoogle Scholar
  30. Lugo AE, Cintron G (1975) The mangrove forests of Puerto Rico and their management. In: Proceedings of the international symposium on biology and management of mangroves, Gainesville, University of FloridaGoogle Scholar
  31. Mauseth JD, Plemons Rodriguez BJ (1997) Presence of paratracheal water storage tissue does not alter vessel characters in cactus wood. Am J Bot 84:815–822. doi: 10.2307/2445817 CrossRefPubMedGoogle Scholar
  32. Mauseth JD, Stevenson JF (2004) Theoretical considerations of vessel diameter and conductive safety in populations of vessels. Int J Plant Sci 165:359–368. doi: 10.1086/382808 CrossRefGoogle Scholar
  33. McClenahan K, Macinnis-Ng C, Eamus D (2004) Hydraulic architecture and water relations of several species at diverse sites around Sydney. Aust J Bot 52:509–518. doi: 10.1071/bt03123 CrossRefGoogle Scholar
  34. McKee KL (1996) Growth and physiological responses of neotropical mangrove seedlings to root zone hypoxia. Tree Physiol 16:883–889CrossRefPubMedGoogle Scholar
  35. Mohamed MOS, Neukermans G, Kairo JG, Dahdouh-Guebas F, Koedam N (2009) Mangrove forests in a peri-urban setting: the case of Mombasa (Kenya). Wetlands Ecol Manage 17:243–255. doi: 10.1007/s11273-008-9104-8 CrossRefGoogle Scholar
  36. Naz N, Hameed M, Ashraf M, Al-Qurainy F, Arshad M (2010) Relationships between gas-exchange characteristics and stomatal structural modifications in some desert grasses under high salinity. Photosynthetica 48:446–456. doi: 10.1007/s11099-010-0059-7 CrossRefGoogle Scholar
  37. Okello JA, Robert EMR, Beeckman H, Kairo JG, Dahdouh-Guebas F, Koedam N (2014) Effects of experimental sedimentation on the phenological dynamics and leaf traits of replanted mangroves at Gazi Bay. Ecol Evol, Kenya. doi: 10.1002/ece3.1154 Google Scholar
  38. Ounis A, Cerovic Z, Briantais J, Moya I (2005) Rasband WS, Image J. US National Institutes of Health, BethesdaGoogle Scholar
  39. Parson TR, Maita Y, Lalli CM (1984) A manual of chemical and biological methods for seawater analysis. Pergamon Press, OxfordGoogle Scholar
  40. Pi N, Tam N, Wu Y, Wong M (2009) Root anatomy and spatial pattern of radial oxygen loss of eight true mangrove species. Aquat Bot 90:222–230CrossRefGoogle Scholar
  41. Quarrie SA, Jones HG (1977) Effects of abscisic-acid and water stress on development and morphology of wheat. J Exp Bot 28:192. doi: 10.1093/jxb/28.1.192 CrossRefGoogle Scholar
  42. Quisthoudt K, Adams J, Rajkaran A, Dahdouh-Guebas F, Koedam N, Randin CF (2013) Disentangling the effects of global climate and regional land-use change on the current and future distribution of mangroves in South Africa. Biodivers Conserv 22:1369–1390. doi: 10.1007/s10531-013-0478-4 CrossRefGoogle Scholar
  43. Robert EMR, Koedam N, Beeckman H, Schmitz N (2009) A safe hydraulic architecture as wood anatomical explanation for the difference in distribution of the mangroves Avicennia and Rhizophora. Funct Ecol 23:649–657. doi: 10.1111/j.1365-2435.2009.01551.x CrossRefGoogle Scholar
  44. Robert EMR et al (2011) Successive cambia: a developmental oddity or an adaptive structure? PLoS ONE. doi: 10.1371/journal.pone.0016558 Google Scholar
  45. Salleo S, Lo Gullo MA, Trifilo P, Nardini A (2004) New evidence for a role of vessel-associated cells and phloem in the rapid xylem refilling of cavitated stems of Laurus nobilis L. Plant, Cell Environ 27:1065–1076. doi: 10.1111/j.1365-3040.2004.01211.x CrossRefGoogle Scholar
  46. Salleo S, Trifilo P, Lo Gullo MA (2006) Phloem as a possible major determinant of rapid cavitation reversal in stems of Laurus nobilis (laurel). Funct Plant Biol 33:1063–1074. doi: 10.1071/fp06149 CrossRefGoogle Scholar
  47. Schmitz N, Verheyden A, Beeckman H, Kairo JG, Koedam N (2006) Influence of a salinity gradient on the vessel characters of the mangrove species Rhizophora mucronata. Ann Bot 98:1321–1330. doi: 10.1093/aob/mcl224 PubMedCentralCrossRefPubMedGoogle Scholar
  48. Schmitz N, Jansen S, Verheyden A, Kairo JG, Beeckman H, Koedam N (2007) Comparative anatomy of intervessel pits in two mangrove species growing along a natural salinity gradient in Gazi Bay, Kenya. Ann Bot 100:271–281. doi: 10.1093/aob/mcm103 PubMedCentralCrossRefPubMedGoogle Scholar
  49. Schmitz N, Robert EMR, Verheyden A, Kairo JG, Beeckman H, Koedam N (2008) A patchy growth via successive and simultaneous cambia: key to success of the most widespread mangrove species Avicennia marina? Ann Bot 101:49–58. doi: 10.1093/aob/mcm280 PubMedCentralCrossRefPubMedGoogle Scholar
  50. Scholander PF, Hemmingsen EA, Hammel HT, Bradstreet EDP (1964) Hydrostatic pressure and osmotic potential in leaves of mangroves and some other plants. Proc Natl Acad Sci USA 52:119. doi: 10.1073/pnas.52.1.119 PubMedCentralCrossRefPubMedGoogle Scholar
  51. Schurr U, Heckenberger U, Herdel K, Walter A, Feil R (2000) Leaf development in Ricinus communis during drought stress: dynamics of growth processes, of cellular structure and of sink-source transition. J Exp Bot 51:1515–1529. doi: 10.1093/jexbot/51.350.1515 CrossRefPubMedGoogle Scholar
  52. Sperry JS, Donnelly JR, Tyree MT (1988) A method for measuring hydraulic conductivity and embolism in xylem. Plant, Cell Environ 11:35–40. doi: 10.1111/j.1365-3040.1988.tb01774.x CrossRefGoogle Scholar
  53. Stuart SA, Choat B, Martin KC, Holbrook NM, Ball MC (2007) The role of freezing in setting the latitudinal limits of mangrove forests. New Phytol 173:576–583. doi: 10.1111/j.1469-8137.2006.01938.x CrossRefPubMedGoogle Scholar
  54. Terrados J et al (1997) The effect of increased sediment Accretion on the survival and growth of Rhizophora apiculata seedlings. Estuar Coast Shelf Sci 45:697–701. doi: 10.1006/ecss.1997.0262 CrossRefGoogle Scholar
  55. Thomas L (1997) Retrospective power analysis. Conserv Biol 11:276–280CrossRefGoogle Scholar
  56. Tomlinson PB (1986) The botany of mangroves. University Press, CambridgeGoogle Scholar
  57. Vaiphasa C, De Boer WF, Panitchart S, Vaiphasa T, Bamrongrugsa N, Santitamnont P (2007) Impact of solid shrimp pond waste materials on mangrove growth and mortality: a case study from Pak Phanang, Thailand. Hydrobiologia 591:47–57. doi: 10.1007/s10750-007-0783-6 CrossRefGoogle Scholar
  58. van Mensvoort T (1998) Mangrove research discussion list. CommunicationGoogle Scholar
  59. Villar-Salvador P, Castro-Diez P, Perez-Rontome C, Montserrat-Martí G (1997) Stem xylem features in three Quercus (Fagaceae) species along a climatic gradient in NE Spain. Trees Struct Funct 12:90–96. doi: 10.1007/pl00009701 Google Scholar
  60. Zwieniecki MA, Hutyra L, Thompson MV, Holbrook NM (2000) Dynamic changes in petiole specific conductivity in red maple (Acer rubrum L.), tulip tree (Liriodendron tulipifera L.) and northern fox grape (Vitis labrusca L.). Plant, Cell Environ 23:407–414. doi: 10.1046/j.1365-3040.2000.00554.x CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Hannes De Deurwaerder
    • 1
    Email author
  • J. A. Okello
    • 2
    • 3
  • N. Koedam
    • 3
  • N. Schmitz
    • 3
    • 4
  • K. Steppe
    • 1
  1. 1.Laboratory of Plant Ecology, Faculty of Bioscience EngineeringGhent University (UGent)GhentBelgium
  2. 2.Kenya Marine and Fisheries Research Institute (KMFRI)MombasaKenya
  3. 3.Laboratory of Plant Biology and Nature Management (APNA)Vrije Universiteit Brussel (VUB)BrusselsBelgium
  4. 4.Universität für Bodenkultur Wien (BOKU)ViennaAustria

Personalised recommendations