, Volume 30, Issue 4, pp 1073–1082 | Cite as

Transcriptome responses of grafted Citrus sinensis plants to inoculation with the arbuscular mycorrhizal fungus Glomus versiforme

  • Xuan Gao
  • Shuang Zhao
  • Qing-Long Xu
  • Jia-Xin XiaoEmail author
Original Article
Part of the following topical collections:
  1. Mycorrhiza


Key message

‘Newhall’ grafted onto xiangcheng rootstock with Glomus versiforme or without displayed different responses, and genes related to photosystem II and alpha-linolenic acid metabolism pathways were involved in the responses.


Previous studies have shown that there are significant differences in the physiological responses of ‘Newhall’ (Citrus sinensis) scions grafted onto trifoliate orange (Poncirus trifoliata) to arbuscular mycorrhizal (AM) fungi inoculation under normal and stress conditions. However, little is known about the transcriptomic responses of C. sinensis to AM fungi inoculation. In this study, we investigated the effects of inoculating the AM fungus Glomus versiforme on the biomass, pigment content, magnesium (Mg) content and distribution, net photosynthesis rate, and global transcriptome profile of ‘Newhall’ scions grafted onto xiangcheng (Citrus junos) rootstock. The results showed that AM inoculation significantly increased plant growth, Mg concentration, and photosynthesis, but not pigment contents. More than 68,299,008 transcripts were examined in spring-flush leaves, and 29 genes were identified as being differentially expressed in response to mycorrhizal colonization. The differentially expressed genes encoded proteinase inhibitors, transporters, and products related to chlorophyll and disease resistance. Genes encoding proteins related to chlorophyll and transport were up-regulated by AM inoculation while genes encoding proteinase inhibitors were down-regulated. Gene Ontology and KEGG database analyses revealed that genes related to photosystem II and alpha-linolenic acid metabolism pathways were involved in the response to AM inoculation. Comparative expression profiling revealed that the enhancement of photosynthesis after AM inoculation was due to activation of the light-harvesting complex family of proteins in photosystem II. Our results provide new insights into plant–mycorrhizal fungi interactions and their effects on plant growth.


Citrus sinensis Arbuscular mycorrhizal fungi Photosynthesis Transport 



This work was supported by the National Natural Science Foundation of China (31372014), Anhui Provincial Natural Science Foundation (1308085MC37) and the program of Collaborative Innovation Center of Recovery and Reconstruction of Degraded Ecosystem in Wanjiang City Belt.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

468_2015_1345_MOESM1_ESM.doc (242 kb)
Supplementary material 1 (DOC 242 kb)


  1. Burleigh SH, Kristensen BK, Bechmann IE (2003) A plasma membrane zinc transporter from Medicago truncatula is up-regulated in roots by Zn fertilization, yet down-regulated by arbuscular mycorrhizal colonization. Plant Mol Biol 52:1077–1088. doi: 10.1023/A:1025479701246 CrossRefPubMedGoogle Scholar
  2. Cavagnaro TR (2008) The role of arbuscular mycorrhizas in improving plant zinc nutrition under low soil zinc concentrations: a review. Plant Soil 304:315–325. doi: 10.1007/s11104-008-9559-7 CrossRefGoogle Scholar
  3. Cavagnaro TR, Bender SF, Asghari HR, van der Heijden MGA (2015) The role of arbuscular mycorrhizas in reducing soil nutrient loss. Trends Plant Sci 20(5):283–290. doi: 10.1016/j.tplants.2015.03.004 CrossRefPubMedGoogle Scholar
  4. Chen Y-Y, Hu C-Y, Xiao J-X (2014) Effects of arbuscular mycorrhizal inoculation on the growth, zinc distribution and photosynthesis of two citrus cultivars grown in low-zinc soil. Trees 28:1427–1436. doi: 10.1007/s00468-014-1046-6 CrossRefGoogle Scholar
  5. Cicatelli A, Lingua G, Todeschini V, Biondi S, Torrigiani P, Castiglione S (2012) Arbuscular mycorrhizal fungi modulate the leaf transcriptome of a Populus alba L. clone grown on a zinc and copper-contaminated soil. Environ Exp Bot 75:25–35. doi: 10.1016/j.envexpbot.2011.08.012 CrossRefGoogle Scholar
  6. Foo E, Ferguson BJ, Reid JB (2014) Common and divergent roles of plant hormones in nodulation and arbuscular mycorrhizal symbioses. Plant Signal Behav 9:e29593. doi: 10.4161/psb.29593 CrossRefPubMedCentralGoogle Scholar
  7. Gianinazzi-Pearson V (1996) Plant cell responses to arbuscular mycorrhizal fungi: getting to the roots of the symbiosis. Plant Cell 8:1871–1883. doi: 10.1105/tpc.8.10.1871 CrossRefPubMedPubMedCentralGoogle Scholar
  8. Giri B, Kapoor R, Mukerji K (2003) Influence of arbuscular mycorrhizal fungi and salinity on growth, biomass, and mineral nutrition of Acacia auriculiformis. Biol Fertil Soils 38:170–175. doi: 10.1007/s00374-003-0636-z CrossRefGoogle Scholar
  9. Giri B, Kapoor R, Mukerji K (2007) Improved tolerance of Acacia nilotica to salt stress by arbuscular mycorrhiza, Glomus fasciculatum may be partly related to elevated K/Na ratios in root and shoot tissues. Microb Ecol 54:753–760. doi: 10.1007/s00248-007-9239-9 CrossRefPubMedGoogle Scholar
  10. Goicoechea N, Antolin M, Sánchez-Díaz M (1997) Gas exchange is related to the hormone balance in mycorrhizal or nitrogen-fixing alfalfa subjected to drought. Physiol Plant 100:989–997. doi: 10.1111/j.1399-3054.1997.tb00027.x CrossRefGoogle Scholar
  11. Graham J, Syvertsen J (1985) Host determinants of mycorrhizal dependency of citrus rootstock seedlings. New Phytol 101:667–676. doi: 10.1111/j.1469-8137.1985.tb02872.x CrossRefGoogle Scholar
  12. Grønlund M, Albrechtsen M, Johansen IE, Hammer EC, Nielsen TH, Jakobsen I (2013) The interplay between P uptake pathways in mycorrhizal peas: a combined physiological and gene-silencing approach. Physiol Plant 149:234–248. doi: 10.1111/ppl.12030 CrossRefPubMedGoogle Scholar
  13. Jha A, Kumar A, Saxena R, Kamalvanshi M, Chakravarty N (2012) Effect of arbuscular mycorrhizal inoculations on seedling growth and biomass productivity of two bamboo species. Indian J Microbiol 52:281–285. doi: 10.1007/s12088-011-0213-3 CrossRefPubMedGoogle Scholar
  14. Koegel S, Ait Lahmidi N, Arnould C, Chatagnier O, Walder F, Ineichen K, Boller T, Wipf D, Wiemken A, Courty PE (2013) The family of ammonium transporters (AMT) in Sorghum bicolor: two AMT members are induced locally, but not systemically in roots colonized by arbuscular mycorrhizal fungi. New Phytol 198:853–865. doi: 10.1111/nph.12199 CrossRefPubMedGoogle Scholar
  15. Krajinski F, Martin-Laurent F, Gianinazzi S, Gianinazzi-Pearson V, Franken P (1998) Cloning and analysis of psam2, a gene from Pisum sativum L. regulated in symbiotic arbuscular mycorrhiza and pathogenic root-fungus interactions. Physiol Mol Plant Pathol 52:297–307CrossRefGoogle Scholar
  16. Liu H, Tan Y, Nell M, Zitter-Eglseer K, Wawscrah C, Kopp B, Wang S, Novak J (2014) Arbuscular mycorrhizal fungal colonization of Glycyrrhiza glabra roots enhances plant biomass, phosphorus uptake and concentration of root secondary metabolites. J Arid Land 6:186–194. doi: 10.1007/s40333-013-0208-5 CrossRefGoogle Scholar
  17. Miller RN, Bertioli DJ, Baurens FC, Santos CM, Alves PC, Martins NF, Togawa RC, Souza MT, Pappas GJ (2008) Analysis of non-TIR NBS-LRR resistance gene analogs in Musa acuminata Colla: isolation, RFLP marker development, and physical mapping. BMC Plant Biol 8:15. doi: 10.1186/1471-2229-8-15 CrossRefPubMedPubMedCentralGoogle Scholar
  18. Ortas I, Ustuner O (2014) The effects of single species, dual species and indigenous mycorrhiza inoculation on citrus growth and nutrient uptake. Eur J Soil Biol 63:64–69. doi: 10.1016/j.ejsobi.2014.05.007 CrossRefGoogle Scholar
  19. Padilla IMG, Encina CL (2005) Changes in root morphology accompanying mycorrhizal alleviation of phosphorus deficiency in micropropagated Annona cherimola Mill. plants. Sci Hortic 106:360–369. doi: 10.1016/j.scienta.2005.05.001 CrossRefGoogle Scholar
  20. Papadakis IE, Dimassi KN, Bosabalidis AM, Therios IN, Patakas A, Giannakoula A (2004) Effects of B excess on some physiological and anatomical parameters of ‘Navelina’ orange plants grafted on two rootstocks. Environ Exp Bot 51:247–257. doi: 10.1016/j.envexpbot.2003.11.004 CrossRefGoogle Scholar
  21. Paszkowski U, Kroken S, Roux C, Briggs SP (2002) Rice phosphate transporters include an evolutionarily divergent gene specifically activated in arbuscular mycorrhizal symbiosis. Proc Natl Acad Sci 99:13324–13329. doi: 10.1073/pnas.202474599 CrossRefPubMedPubMedCentralGoogle Scholar
  22. Philippe RN, Ralph SG, Külheim C, Jancsik SI, Bohlmann J (2009) Poplar defense against insects: genome analysis, full-length cDNA cloning, and transcriptome and protein analysis of the poplar Kunitz-type protease inhibitor family. New Phytol 184:865–884. doi: 10.1111/j.1469-8137.2009.03028.x CrossRefPubMedGoogle Scholar
  23. Phillips J, Hayman D (1970) Improved procedures for clearing roots and staining parasitic and vesicular–arbuscular mycorrhizal fungi for rapid assessment of infection. Trans Br Mycol Soc 55:158–IN118. doi: 10.1016/S0007-1536(70)80110-3
  24. Pinior A, Grunewaldt-Stöcker G, von Alten H, Strasser RJ (2005) Mycorrhizal impact on drought stress tolerance of rose plants probed by chlorophyll a fluorescence, proline content and visual scoring. Mycorrhiza 15:596–605. doi: 10.1007/s00572-005-0001-1 CrossRefPubMedGoogle Scholar
  25. Ruotsalainen AL, Kytöviita M-M (2004) Mycorrhiza does not alter low temperature impact on Gnaphalium norvegicum. Oecologia 140:226–233. doi: 10.1007/s00442-004-1586-3 CrossRefPubMedGoogle Scholar
  26. Talaat NB, Shawky BT (2014) Protective effects of arbuscular mycorrhizal fungi on wheat (Triticum aestivum L.) plants exposed to salinity. Environ Exp Bot 98:20–31. doi: 10.1016/j.envexpbot.2013.10.005 CrossRefGoogle Scholar
  27. Tian H, Drijber RA, Li X, Miller DN, Wienhold BJ (2013) Arbuscular mycorrhizal fungi differ in their ability to regulate the expression of phosphate transporters in maize (Zea mays L.). Mycorrhiza 23:507–514. doi: 10.1007/s00572-013-0491-1 CrossRefPubMedGoogle Scholar
  28. Wang X (2006) Experimental principle and technique for plant physiology and biochemistry. Higher Education Press, Beijing, pp 118–283Google Scholar
  29. Wang P, Zhang J, Shu B, Xia R (2012) Arbuscular mycorrhizal fungi associated with citrus orchards under different types of soil management, southern China. Plant Soil Environ 58:302–308Google Scholar
  30. Wilson GW, Hickman KR, Williamson MM (2012) Invasive warm-season grasses reduce mycorrhizal root colonization and biomass production of native prairie grasses. Mycorrhiza 22:327–336. doi: 10.1007/s00572-011-0407-x CrossRefPubMedGoogle Scholar
  31. Wright D, Scholes J, Read D (1998) Effects of VA mycorrhizal colonization on photosynthesis and biomass production of Trifolium repens L. Plant Cell Environ 21:209–216. doi: 10.1046/j.1365-3040.1998.00280.x CrossRefGoogle Scholar
  32. Wu Q-S, Xia R-X (2006) Arbuscular mycorrhizal fungi influence growth, osmotic adjustment and photosynthesis of citrus under well-watered and water stress conditions. J Plant Physiol 163:417–425. doi: 10.1016/j.jplph.2005.04.024 CrossRefPubMedGoogle Scholar
  33. Wu Q-S, Lou YG, Li Y (2015) Plant growth and tissue sucrose metabolism in the system of trifoliate orange and arbuscular mycorrhizal fungi. Sci Hortic 181:189–193. doi: 10.1016/j.scienta.2014.11.006 CrossRefGoogle Scholar
  34. Xiao JX, Hu CY, Chen YY, Yang B, Hua J (2014) Effects of low magnesium and an arbuscular mycorrhizal fungus on the growth, magnesium distribution and photosynthesis of two citrus cultivars. Sci Hortic 177:14–20. doi: 10.1016/j.scienta.2014.07.016 CrossRefGoogle Scholar
  35. Xiao JX, Hu CY, Chen YY, Hua J, Yang B (2015) Growth and nutrient content of trifoliate orange seedlings influenced by arbuscular mycorrhizal fungi inoculation in low magnesium soil. J Plant Nutr 38:1516–1529. doi: 10.1080/01904167.2014.957400 CrossRefGoogle Scholar
  36. Yao Q, Wang LR, Zhu HH, Chen JZ (2009) Effects of arbuscular mycorrhizal fungal inoculation on root system architecture of trifoliate orange (Poncirus trifoliata L. Raf.) seedlings. Sci Hortic 121:458–461. doi: 10.1016/j.scienta.2009.03.013 CrossRefGoogle Scholar
  37. Zhao X, Zhang J, Chen C, Yang J, Zhu H, Liu M, Lv F (2014) Deep sequencing-based comparative transcriptional profiles of Cymbidium hybridum roots in response to mycorrhizal and non-mycorrhizal beneficial fungi. BMC Genom 15:747. doi: 10.1186/1471-2164-15-747 CrossRefGoogle Scholar
  38. Zouari I, Salvioli A, Chialva M, Novero M, Miozzi L, Tenore GC, Bagnaresi P, Bonfante P (2014) From root to fruit: RNA-Seq analysis shows that arbuscular mycorrhizal symbiosis may affect tomato fruit metabolism. BMC Genom 15:221. doi: 10.1186/1471-2164-15-221 CrossRefGoogle Scholar
  39. Zubek S, Turnau K, Tsimilli-Michael M, Strasser RJ (2009) Response of endangered plant species to inoculation with arbuscular mycorrhizal fungi and soil bacteria. Mycorrhiza 19:113–123. doi: 10.1007/s00572-008-0209-y CrossRefPubMedGoogle Scholar
  40. Zubek S, Stojakowska A, Anielska T, Turnau K (2010) Arbuscular mycorrhizal fungi alter thymol derivative contents of Inula ensifolia L. Mycorrhiza 20:497–504. doi: 10.1007/s00572-010-0306-6 CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Xuan Gao
    • 1
  • Shuang Zhao
    • 1
  • Qing-Long Xu
    • 1
  • Jia-Xin Xiao
    • 1
    Email author
  1. 1.Key Laboratory for the Conservation and Utilization of Important Biological Resources, Anhui Province, College of Life SciencesAnhui Normal UniversityWuhuChina

Personalised recommendations