, Volume 30, Issue 1, pp 295–303 | Cite as

Xylem traits and water-use efficiency of woody species co-occurring in the Ti Tree Basin arid zone

  • Nadia S. Santini
  • James Cleverly
  • Rolf Faux
  • Catherine Lestrange
  • Rizwana Rumman
  • Derek Eamus
Original Article
Part of the following topical collections:
  1. Drought Stress


Key message

Species with low density of intact branches are likely to have higher growth rates than species with high density of intact branches, but at the cost of a lower water-use efficiency and larger sensitivity to xylem embolism.


The hydraulic niche separation theory proposes that species co-exist by having a range of traits to allow differential access to resources within heterogeneous environments. Here, we examined variation in branch xylem anatomy and foliar carbon stable isotopes (δ13C) as a measure of water-use efficiency (WUE) in seven co-occurring species, Acacia aneura, Acacia bivenosa, Corymbia opaca, Eucalyptus camaldulensis, Erythrina vespertilio, Hakea sp., and Psydrax latifolia, in an arid zone open Corymbia savanna on the Ti Tree Basin, Northern Territory, Australia. We test the following hypotheses: (1) Species with large conductive areas exhibit a low density of intact branches, while species with small conductive areas have a significantly higher density of intact branches. (2) Species with smaller conductive areas exhibit more enriched values of δ13C and therefore have larger WUE than those with larger conductive areas and (3) there is an inverse correlation between theoretical sapwood hydraulic conductivity and vessel implosion resistance. The results of this study demonstrated significant variation in density of intact branches, ranging from 0.38 to 0.80 g cm−3 and this variation was largely explained by variation in sapwood conductive area. Species with low conductive areas (P. latifolia, Hakea sp. and Acacia species) exhibited large values of WUE (r 2 = 0.62, p < 0.05). These species are likely to be less vulnerable to cavitation by having small conductive areas and thicker fibre walls. We demonstrated a significant (r 2 = 0.83, p = 0.004) negative correlation between theoretical sapwood hydraulic conductivity and vessel implosion resistance. These results are discussed in relation to hydraulic niche separation.


Wood anatomy Hydraulic niche separation Arid zone Water-use efficiency Carbon isotopes 



We would like to thank the Endeavour Fellowships Scope Global, Australia for financial support (Grant number ERF_PDR_4065_2014). We also thank Dr. Sebastian Pfautsch from the University of Western Sydney. Jacqueline Loyola-Echeverría, Dr. Rachael Nolan and Tonantzin Tarin-Terrazas from the University of Technology Sydney, Dr. Nele Schmitz from the École Normale Supérieure de Lyon and Dr. Kasia Ziemińska from Macquaire University for laboratory assistance and advice during the planning and development of this study. This work was also supported by an ARC grant (DP140101150) awarded to Derek Eamus.

Compliance with ethical standards

Conflict of interest

The authors declare they have no conflict of interest.

Supplementary material

468_2015_1301_MOESM1_ESM.docx (279 kb)
Supplementary material 1 (DOCX 86 kb)


  1. Australian Bureau of Meteorology (2014) Australian Bureau of Meteorology home page. Commonwealth of Australia: Canberra. Accessed 1 Nov 2014
  2. Ball MC (1988) Salinity tolerance in the mangroves Aegiceras corniculatum and Avicennia marina I. Water use in relation to growth, carbon partitioning, and salt balance. Aust J Plant Physiol 15:447–464. doi: 10.1071/PP9880447 CrossRefGoogle Scholar
  3. Bucci SJ, Goldstein G, Meinzer FC, Scholz FG, Franco AC, Bustamante M (2004) Functional convergence in hydraulic architecture and water relations of tropical savanna trees: from leaf to whole plant. Tree Physiol 24:891–899. doi: 10.1093/treephys/24.8.891 CrossRefPubMedGoogle Scholar
  4. Carbon dioxide information analysis center (2014) Accessed 1 Sept 2014
  5. Carlquist S (1977) Ecological factors in wood evolution: a floristic approach. Am J Bot 64:887–896CrossRefGoogle Scholar
  6. Chave J, Coomes D, Jansen S, Lewis SL, Swenson NG, Zanne AE (2009) Towards a worldwide wood economics spectrum. Ecol Lett 12:351–366. doi: 10.1111/j.1461-0248.2009.01285.x CrossRefPubMedGoogle Scholar
  7. Cornelissen JHC, Lavorel S, Garnier E, Diaz S, Buchmann N, Gurvich DE, Reich PB, Steege H, Morgan HD, van der Heijden MGA, Pausas JG, Poorter H (2003) A handbook of protocols for standardized and easy measurement of plant functional traits worldwide. Aust J Bot 51:335–380. doi: 10.1071/BT02124 CrossRefGoogle Scholar
  8. Craven D, Hall JS, Ashton MS, Berlyn GP (2013) Water use efficiency and whole plant performance of nine tropical tree species at two sites with contrasting water availability in Panama. Trees 27:639–653. doi: 10.1007/s00468-012-0818-0 CrossRefGoogle Scholar
  9. Dunkerley D (2002) Systematic variation of soil infiltration rates within and between the components of the vegetation mosaic in an Australian desert landscape. Hydrol Process 16:119–131. doi: 10.1001/hyp.357 CrossRefGoogle Scholar
  10. Eamus D (1991) The interaction of rising CO2 and temperatures with water use efficiency. Plant Cell Environ 14:843–852. doi: 10.1111/j.1365-3040.1991.tb01447.x CrossRefGoogle Scholar
  11. Eamus D (2003) How does ecosystem water balance affect net primary productivity of woody ecosystems? Funct Plant Biol 30:187–205. doi: 10.1071/FP02084 CrossRefGoogle Scholar
  12. Enquist B, West G, Charnov E, Brown J (1999) Allometric scaling of production and life-history variation in vascular plants. Nature 401:909–911. doi: 10.1038/44819 CrossRefGoogle Scholar
  13. Enquist BJ, Kerkhoff AJ, Stark SC, Swenson NG, McCarthy MC, Price CA (2007) A general integrative model for scaling plant growth, carbon flux, and functional trait spectra. Nature 449:218–222. doi: 10.1038/nature06061 CrossRefPubMedGoogle Scholar
  14. Farquhar GD, Richards RA (1984) Isotopic composition of plant carbon correlates with water use efficiency of wheat genotypes. Aust J Plant Physiol. 11:539–552. doi: 10.1071/PP9840539 CrossRefGoogle Scholar
  15. Froend RH, Drake PL (2006) Defining phreatophyte response to reduced water availability: preliminary investigations on the use of xylem cavitation vulnerability in Banksia woodland species. Aus J Bot. 54:173–179. doi: 10.1071/BT05081 CrossRefGoogle Scholar
  16. Gessler A, Brandes E, Buchmann N, Helle G, Rennenberg H, Barnard RL (2009) Tracing carbon and oxygen isotope signals from newly assimilated sugars in the leaves to the tree-ring archive. Plant Cell Environ 32:780–795. doi: 10.1111/j.1365-3040.2009.01957.x CrossRefPubMedGoogle Scholar
  17. Groom PK (2004) Rooting depth and plant water relations explain species distribution patterns within a sandplain landscape. Func Plant Biol 31:423–428. doi: 10.1071/FP03200 CrossRefGoogle Scholar
  18. Hacke UG, Sperry JS, Pockman WT, Davis SD, McCulloh KA (2001) Trends in wood density and structure are linked to prevention of xylem implosion by negative pressure. Oecologia 126:457–461. doi: 10.1007/s004420100628 CrossRefGoogle Scholar
  19. Harrington GA, Cook PG, Herczeg AL (2002) Spatial and temporal variability of groundwater recharge in Central Australia: a tracer approach. Groundwater 40:518–528. doi: 10.1111/j.1745-6584.2002.tb02536.x CrossRefGoogle Scholar
  20. Hasselquist N, Allen M, Santiago L (2010) Water relations of evergreen and drought-deciduous trees along a seasonally dry tropical forest chronosequence. Oecologia 164:881–890. doi: 10.1007/s00468-012-0818-0 PubMedCentralCrossRefPubMedGoogle Scholar
  21. International Association of Wood Anatomists (IAWA) (2014). Accessed 5 May 2015
  22. Jacobsen AL, Ewers FW, Pratt B, Paddock WA, Davis SD (2005) Do xylem fibres affect vessel cavitation resistance? Plant Physiol 139:546–556. doi: 10.1104/pp.104 PubMedCentralCrossRefPubMedGoogle Scholar
  23. King DA, Davies SJ, Tan S, Noor NSM (2006) The role of wood density and stem support costs in the growth and mortality of tropical trees. J Ecol. 94:670–680. doi: 10.1111/j.1365-2745.2006.01112.x CrossRefGoogle Scholar
  24. Kriedemann PE (1986) Stomatal and photosynthetic limitations to leaf growth. Aust J Plant Physiol. 13:15–32CrossRefGoogle Scholar
  25. Lachenbrunch B, McCulloh KA (2014) Traits, properties, and performance: how woody plants combine hydraulic and mechanical functions in a cell, tissue, or whole plant. New Phytol 204:747–764. doi: 10.1111/nph.13035 CrossRefGoogle Scholar
  26. Lewis AM (1992) Measuring the hydraulic diameter of a pore or conduit. Am J Bot 79:1158–1161CrossRefGoogle Scholar
  27. Marshall JD, Brooks JR, Lajtha K (2007) Sources of variation in the stable isotopic composition of plants. In: Michener R, Lajtha K (eds) Stable isotopes in ecology and environmental science. Blackwell Publishing, Carlton, pp 22–60CrossRefGoogle Scholar
  28. Martínez-Cabrera HI, Estrada-Ruiz E (2014) Wood anatomy reveals high theoretical hydraulic conductivity and low resistance to vessel implosion in a cretaceous fossil forest from Northern Mexico. PloS One 10:e108866. doi: 10.1371/journal.pone.0108866 CrossRefGoogle Scholar
  29. Meinzer FC, Campanello PI, Domec J, Gatti MG, Goldstein G, Villalobos-Vega R, Woodruff DR (2008) Constraints on physiological function associated with branch architecture and wood density in tropical forest trees. Tree Physiol 28:1609–1617CrossRefPubMedGoogle Scholar
  30. O’ Grady AP, Cook PG, Eamus D, Duguid A, Wischunsen JDH, Fass T, Worldege D (2009) Convergence of tree water use within an arid-zone woodland. Oecologia 160:643–655. doi: 10.1007/s00442-009-1332-y CrossRefGoogle Scholar
  31. O’Grady AP, Eamus D, Cook PG, Lamontagne S (2006) Groundwater use by riparian vegetation in the wet-dry tropics of northern Australia. Aust J Bot 54:145–154. doi: 10.1071/BT04164 CrossRefGoogle Scholar
  32. Pausas JG (2015) Bark thickness and fire regime. Funct Ecol 29:315–327. doi: 10.1111/1365-2435.12372 CrossRefGoogle Scholar
  33. Pratt R, Jacobsen A, Ewers F, Davis S (2007) Relationships among xylem transport, biomechanics and storage and roots of nine Rhamnaceae species of the California chaparral. New Phytol 174:787–798. doi: 10.1111/j.1469-8137.2007.02061.x CrossRefPubMedGoogle Scholar
  34. R Development Core Team (2008) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Australia.
  35. Santini NS, Schmitz N, Bennion V, Lovelock CE (2012) The anatomical basis of the link between density and mechanical strength in mangrove branches. Funct Plant Biol 40:400–408. doi: 10.1071/FP12204 CrossRefGoogle Scholar
  36. Scholz FG, Bucci SJ, Goldstein G, Meinzer FC, Franco AC, Miralles-Wilhelm F (2007) Biophysical properties and functional significance of stem water storage tissues in Neotropical savanna trees. Plant Cell Environ 30:236–248. doi: 10.1111/j.1365-3040.2006.01623.x CrossRefPubMedGoogle Scholar
  37. Silvertown J (2004) Plant coexistence and the niche. Trends Ecol Evol 19:605–611. doi: 10.1016/j.tree.2004.09.003 CrossRefGoogle Scholar
  38. Silvertown J, Dodd ME, Gowing DJG, Mountford JO (1999) Hydrologically defined niches reveal a basis for species richness in plant communities. Nature 400:61–63. doi: 10.1038/21877 CrossRefGoogle Scholar
  39. Sterck F, Markesteijn L, Schieving F, Poorter L (2011) Functional traits determine trade-offs and niches in a tropical forest community. PNAS 108:20627–20632. doi: 10.1073/pnas.1106950108 PubMedCentralCrossRefPubMedGoogle Scholar
  40. Terradas J, Peñuelas J, Lloret F (2009) The fluctuation niche in plants. International Journal of Ecology 2009: ID 959702. doi: 10.1155/2009/959702
  41. Tyree MT, Ewers FW (1991) The hydraulic architecture of trees and other woody plants. New Phytol 119:345–360. doi: 10.1111/j.1469-8137.1991.tb00035.x CrossRefGoogle Scholar
  42. Zanne A, Westoby M, Falster DS, Ackerly DD, Loarie SR, Arnold SEJ, Coomes DA (2010) Angiosperm wood structure: global patterns in vessel anatomy and their relation to wood density and potential conductivity. Am J Bot 97:207–215. doi: 10.3732/ajb.0900178 CrossRefPubMedGoogle Scholar
  43. Zieminska K, Butler DW, Gleason SM, Wright IJ, Westoby M (2013) Fibre wall and lumen fractions drive wood density variation across 24 Australian angiosperms. AoB PLANTS 5:plt046; doi: 10.1093/aobpla/plt046

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Nadia S. Santini
    • 1
  • James Cleverly
    • 1
  • Rolf Faux
    • 1
  • Catherine Lestrange
    • 1
  • Rizwana Rumman
    • 1
  • Derek Eamus
    • 1
  1. 1.Terrestrial Ecohydrology Research GroupUniversity of Technology SydneySydneyAustralia

Personalised recommendations