, Volume 30, Issue 1, pp 265–279 | Cite as

Reduced stem growth, but no reserve depletion or hydraulic impairment in beech suffering from long-term decline

  • Alice Delaporte
  • Stephane Bazot
  • Claire Damesin
Original Article
Part of the following topical collections:
  1. Long Distance Transport: Phloem and Xylem



Under non-extreme drought conditions, reduced stem growth is not associated with reserve or hydraulic impairment in beech suffering from long-term decline.


Global change is expected to increase the frequency and the intensity of drought events in temperate ecosystems. In some regions, this might be associated with an increase in tree decline. Of the ecophysiological mechanisms that have been proposed to explain tree decline, an impairment of the vascular transport system and/or carbon function are two of the most discussed. In a context of long-term decline caused by droughts, we investigated the functional differences between the carbon, nitrogen, and hydraulic functions of healthy and declining mature beech (Fagus sylvatica L.) trees. The study was carried out over two consecutive years with contrasting water availabilities. The radial growth of declining trees was clearly less than that of healthy trees, due to a lower growth rate, associated during the wet year with a shorter growth period. Leaf functional characteristics and hydraulic parameters (native embolism and cavitation vulnerability curves) were similar in healthy and declining trees. However, at the end of a growing season characterized by a dry spring, carbon reserves concentrations in young branches of declining trees were lower than those in healthy trees, though they recovered during the following non-constraining growing season. Our results did not indicate carbon starvation, nitrogen deficiency, or hydraulic failure. However, there seems to be some compensation mechanism related to reserve dynamics in the remaining living tissue of the declining trees. This study shows that the climate conditions of successive years are probably crucial for these functional adjustments to be operational.


Beech Reserves Forest decline Growth Hydraulic failure 



The authors would like to acknowledge the students who contributed to data collection and field work: Alain Sévéré for his help with the branch sampling, and Michèle Viel and Patricia Le Thuaut for technical assistance. We are grateful to the French National Forest Office (ONF) for allowing us to carry out these experiments. The authors thank Stéphane Herbette (UMR PIAF INRA, Université Blaise Pascal), for help with the measurements of vulnerability curves.

Compliance with ethical standards


AD’s doctoral grant was provided by the French Ministry of Higher Education and Scientific Research. Additional financial support was provided by a CYTRIX project (EC2CO) funded by CNRS and INSU and also by the ESE laboratory supported by the University Paris-Sud, CNRS and AgroParisTech.

Conflict of interest

The authors declare that they have no conflict of interest.


  1. Adams HD, Guardiola-Claramonte M, Barron-Gafford GA et al (2009) Reply to Sala: temperature sensitivity in drought-induced tree mortality hastens the need to further resolve a physiological model of death. Proc Natl Acad Sci USA 106:E69. doi: 10.1073/pnas.0905282106 PubMedCentralCrossRefGoogle Scholar
  2. Adams HD, Germino MJ, Breshears DD et al (2013) Nonstructural leaf carbohydrate dynamics of Pinus edulis during drought-induced tree mortality reveal role for carbon metabolism in mortality mechanism. New Phytol 197:1142–1151. doi: 10.1111/nph.12102 CrossRefPubMedGoogle Scholar
  3. Allen CD, Macalady AK, Chenchouni H et al (2010) A global overview of drought and heat-induced tree mortality reveals emerging climate change risks for forests. For Ecol Manag 259:660–684. doi: 10.1016/j.foreco.2009.09.001 CrossRefGoogle Scholar
  4. Amoroso MM, Daniels LD, Larson BC (2012) Temporal patterns of radial growth in declining Austrocedrus chilensis forests in Northern Patagonia: the use of tree-rings as an indicator of forest decline. For Ecol Manag 265:62–70CrossRefGoogle Scholar
  5. Anderegg WRL, Berry JA, Field CB (2012a) Linking definitions, mechanisms, and modeling of drought-induced tree death. Trends Plant Sci 17:693–700CrossRefPubMedGoogle Scholar
  6. Anderegg WRL, Berry JA, Smith DD et al (2012b) The roles of hydraulic and carbon stress in a widespread climate-induced forest die-off. Proc Natl Acad Sci USA 109:233–237PubMedCentralCrossRefPubMedGoogle Scholar
  7. Anderegg WRL, Plavcová L, Anderegg LDL et al (2013) Drought’s legacy: multiyear hydraulic deterioration underlies widespread aspen forest die-off and portends increased future risk. Glob Chang Biol. doi: 10.1111/gcb.12100 Google Scholar
  8. Anderegg WRL, Anderegg LDL, Berry JA, Field CB (2014) Loss of whole-tree hydraulic conductance during severe drought and multi-year forest die-off. Oecologia 175:11–23. doi: 10.1007/s00442-013-2875-5 CrossRefPubMedGoogle Scholar
  9. Aussenac G, Ducrey M (1977) Etude bioclimatique d’une futaie feuillue (Fagus silvatica L. et Quercus sessiliflora Salisb.) de l’Est de la France. I—Analyse des profils microclimatiques et des caractéristiques anatomiques et morphologiques de l’appareil foliaire. Ann des Sci For 34:265–284CrossRefGoogle Scholar
  10. Bahrman N, Plomion C, Petit RJ, Kremer A (1997) Contribution of two-dimensional electrophoresis of proteins to maritime pine genetics. Ann For Sci 54:225–236CrossRefGoogle Scholar
  11. Balsberg Påhlsson AM (1989) Mineral nutrients, carbohydrates and phenolic compounds in leaves of beech (Fagus sylvatica L.) in southern Sweden as related to environmental factors. Tree Physiol 5:485–495CrossRefPubMedGoogle Scholar
  12. Barbaroux C, Bréda N (2002) Contrasting distribution and seasonal dynamics of carbohydrate reserves in stem wood of adult ring-porous sessile oak and diffuse-porous beech trees. Tree Physiol 22:1201–1210CrossRefPubMedGoogle Scholar
  13. Barbaroux C, Bréda N, Dufrêne É (2003) Distribution of above-ground and below-ground carbohydrate reserves in adult trees of two contrasting broad-leaved species (Quercus petraea and Fagus sylvatica). New Phytol 157:605–615. doi: 10.1046/j.1469-8137.2003.00681.x CrossRefGoogle Scholar
  14. Barigah TS, Charrier O, Douris M et al (2013) Water stress-induced xylem hydraulic failure is a causal factor of tree mortality in beech and poplar. Ann Bot 112:1431–1437. doi: 10.1093/aob/mct204 PubMedCentralCrossRefPubMedGoogle Scholar
  15. Bazot S, Barthes L, Blanot D, Fresneau C (2013) Distribution of non-structural nitrogen and carbohydrate compounds in mature oak trees in a temperate forest at four key phenological stages. Trees Struct Funct 27:1023–1034. doi: 10.1007/s00468-013-0853-5 CrossRefGoogle Scholar
  16. Bossel H (1986) Dynamics of forest dieback: systems analysis and simulation. Ecol Modell 34:259–288. doi: 10.1016/0304-3800(86)90008-6 CrossRefGoogle Scholar
  17. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254CrossRefPubMedGoogle Scholar
  18. Bréda N, Badeau V (2008) Forest tree responses to extreme drought and some biotic events: towards a selection according to hazard tolerance? Comptes Rendus Geosci 340:651–662. doi: 10.1016/j.crte.2008.08.003 CrossRefGoogle Scholar
  19. Bréda N, Huc R, Granier A, Dreyer E (2006) Temperate forest trees and stands under severe drought: a review of ecophysiological responses, adaptation processes and long-term consequences. Ann For Sci 63:625–644. doi: 10.1051/forest CrossRefGoogle Scholar
  20. Breshears DD, Myers OB, Meyer CW et al (2009) Tree die-off in response to global change-type drought: mortality insights from a decade of plant water potential measurements. Front Ecol Environ 7:185–189. doi: 10.1890/080016 CrossRefGoogle Scholar
  21. Bresson CC, Vitasse Y, Kremer A, Delzon S (2011) To what extent is altitudinal variation of functional traits driven by genetic adaptation in European oak and beech? Tree Physiol 31:1164–1174. doi: 10.1093/treephys/tpr084 CrossRefPubMedGoogle Scholar
  22. Brodribb TJ, Cochard H (2009) Hydraulic failure defines the recovery and point of death in water-stressed conifers. Plant Physiol 149:575–584. doi: 10.1104/pp.108.129783 PubMedCentralCrossRefPubMedGoogle Scholar
  23. Brodribb TJ, Bowman DJMS, Nichols S et al (2010) Xylem function sand growth rate interact to determine recovery rates after exposure to extreme water deficit. New Phytol 188:533–542. doi: 10.1111/j.1469-8137.2010.03393.x CrossRefPubMedGoogle Scholar
  24. Brummer Y, Cui SW (2005) Understanding carbohydrate analysis. Food Carbohydr Chem Phys Prop Appl. Taylor and Francis group, pp 67–104Google Scholar
  25. Bussotti F, Prancrazi M, Matteucci G, Gerosa G (2005) Leaf morphology and chemistry in Fagus sylvatica (beech) trees as affected by site factors and ozone: results from CONECOFOR permanent monitoring plots in Italy. Tree Physiol 25:211–219. doi: 10.1093/treephys/25.2.211 CrossRefPubMedGoogle Scholar
  26. Canham CD, Kobe RK, Latty EF, Chazdon RL (1999) Interspecific and intraspecific variation in tree seedling survival: effects of allocation to roots versus carbohydrate reserves. Oecologia 121:1–11. doi: 10.1007/s004420050900 CrossRefGoogle Scholar
  27. Chapin SF, Schultze E-D, Mooney HA (1990) The ecology and economics of storage in plants. Annu Rev Ecol Syst 21:423–447CrossRefGoogle Scholar
  28. Choat B, Jansen S, Brodribb TJ et al (2012) Global convergence in the vulnerability of forests to drought. Nature 491:752–755PubMedGoogle Scholar
  29. Closa I, Irigoyen JJ, Goicoechea N (2010) Microclimatic conditions determined by stem density influence leaf anatomy and leaf physiology of beech (Fagus sylvatica L.) growing within stands that naturally regenerate from clear-cutting. Trees Struct Funct 24:1029–1043. doi: 10.1007/s00468-010-0472-3 CrossRefGoogle Scholar
  30. Cochard H (2002) A technique for measuring xylem hydraulic conductance under high negative pressures. Plant Cell Environ 25:815–819. doi: 10.1046/j.1365-3040.2002.00863.x CrossRefGoogle Scholar
  31. Cochard H, Herbette S, Barigah TS et al (2010) Does sample length influence the shape of xylem embolism vulnerability curves? A test with the Cavitron spinning technique. Plant Cell Environ 33:1543–1552. doi: 10.1111/j.1365-3040.2010.02163.x PubMedGoogle Scholar
  32. Demchik MC, Sharpe WE (2000) The effect of soil nutrition, soil acidity and drought on northern red oak (Quercus rubra L.) growth and nutrition on Pennsylvania sites with high and low red oak mortality. For Ecol Manag 136:199–207. doi: 10.1016/S0378-1127(99)00307-2 CrossRefGoogle Scholar
  33. Dietze MC, Sala A, Carbone MS et al (2014) Nonstructural carbon in woody plants. Annu Rev Plant Biol 65:667–687. doi: 10.1146/annurev-arplant-050213-040054 CrossRefPubMedGoogle Scholar
  34. Domec J-C, Gartner BL (2001) Cavitation and water storage capacity in bole xylem segments of mature and young Douglas-fir trees. Trees Struct Funct 15:204–214. doi: 10.1007/s004680100095 CrossRefGoogle Scholar
  35. Durand-Gillmann M, Cailleret M, Boivin T et al (2012) Individual vulnerability factors of Silver fir (Abies alba Mill.) to parasitism by two contrasting biotic agents: mistletoe (Viscum album L. ssp. abietis) and bark beetles (Coleoptera: Curculionidae: Scolytinae) during a decline process. Ann For Sci 69:1–15. doi: 10.1007/s13595-012-0251-y CrossRefGoogle Scholar
  36. Evans JR (1989) Photosynthesis and nitrogen relationships in leaves of C3 plants. Oecologia 78:9–19. doi: 10.1007/BF00377192 CrossRefGoogle Scholar
  37. Farquhar GD, Ehleringer JR, Hubick KT (1989) Carbon isotope discrimination and photosynthesis. Annu Rev Plant Physiol Plant Mol Biol 40:503–537CrossRefGoogle Scholar
  38. Fotelli MN, Rennenberg H, Geßler A (2002) Effects of drought on the competitive interference of an early successional species (Rubus fruticosus) on Fagus sylvatica L. Seedlings: 15 N uptake and partitioning, responses of amino acids and other N compounds. Plant Biol 4:311–320. doi: 10.1055/s-2002-32334 CrossRefGoogle Scholar
  39. Fotelli MN, Rienks M, Rennenberg H, Geßler A (2004) Climate and forest management affect 15N-uptake, N balance and biomass of European beech seedlings. Trees Struct Funct 18:157–166. doi: 10.1007/s00468-003-0289-4 CrossRefGoogle Scholar
  40. Fotelli MN, Nahm M, Radoglou K et al (2009) Seasonal and interannual ecophysiological responses of beech (Fagus sylvatica) at its south-eastern distribution limit in Europe. For Ecol Manag 257:1157–1164CrossRefGoogle Scholar
  41. Galiano L, MartÍnez-Vilalta J, Lloret F (2011) Carbon reserves and canopy defoliation determine the recovery of Scots pine 4 yr after a drought episode. New Phytol 190:750–759. doi: 10.1111/j.1469-8137.2010.03628.x CrossRefPubMedGoogle Scholar
  42. Galiano L, MartÍnez-Vilalta J, Sabaté S, Lloret F (2012) Determinants of drought effects on crown condition and their relationship with depletion of carbon reserves in a Mediterranean holm oak forest. Tree Physiol 32:478–489. doi: 10.1093/treephys/tps025 CrossRefPubMedGoogle Scholar
  43. Galvez DA, Landhäusser SM, Tyree MT (2011) Root carbon reserve dynamics in aspen seedlings: does simulated drought induce reserve limitation? Tree Physiol 31:250–257. doi: 10.1093/treephys/tpr012 CrossRefPubMedGoogle Scholar
  44. Geßler A, Keitel C, Nahm M, Rennenberg H (2004) Water shortage affects the water and nitrogen balance in central European beech forests. Plant Biol 6:289–298CrossRefPubMedGoogle Scholar
  45. Gilson A, Barthes L, Delpierre N et al (2014) Seasonal changes in carbon and nitrogen compound concentrations in a Quercus petraea chronosequence. Tree Physiol 34:716–729. doi: 10.1093/treephys/tpu060 CrossRefPubMedGoogle Scholar
  46. Gleason SM, Ares A (2004) Photosynthesis, carbohydrate storage and survival of a native and an introduced tree species in relation to light and defoliation. Tree Physiol 24:1087–1097. doi: 10.1093/treephys/24.10.1087 CrossRefPubMedGoogle Scholar
  47. Hacke UG, Sauter JJ (1995) Vulnerability of xylem to embolism in relation to leaf water potential and stomatal conductance in Fagus sylvatica f. purpurea and Populus balsamifera. J Exp Bot 46:1177–1183. doi: 10.1093/jxb/46.9.1177 CrossRefGoogle Scholar
  48. Hartmann H, Ziegler W, Kolle O, Trumbore S (2013a) Thirst beats hunger—declining hydration during drought prevents carbon starvation in Norway spruce saplings. New Phytol 200:340–349. doi: 10.1111/nph.12331 CrossRefPubMedGoogle Scholar
  49. Hartmann H, Ziegler W, Trumbore S (2013b) Lethal drought leads to reduction in nonstructural carbohydrates in Norway spruce tree roots but not in the canopy. Funct Ecol 27:413–427. doi: 10.1111/1365-2435.12046 CrossRefGoogle Scholar
  50. Hoch G, Richter A, Körner C (2003) Non-structural carbon compounds in temperate forest trees. Plant Cell Environ 26:1067–1081CrossRefGoogle Scholar
  51. Hsiao TC (1973) Plant responses to water stress. Annu Rev Plant Physiol 24:519–570. doi: 10.1146/annurev.pp.24.060173.002511 CrossRefGoogle Scholar
  52. Intergovernmental Panel on Climate Change (2014) Climate change 2014: synthesis reportGoogle Scholar
  53. Jenkins MA, Pallardy SG (1995) The influence of drought on red oak group species growth and mortality in the Missouri Ozarks. Can J For Res 25:1119–1127. doi: 10.1139/x95-124 CrossRefGoogle Scholar
  54. Keitel C, Matzarakis A, Rennenberg H, Geßler A (2006) Carbon isotopic composition and oxygen isotopic enrichment in phloem and total leaf organic matter of European beech (Fagus sylvatica L.) along a climate gradient. Plant Cell Environ 29:1492–1507. doi: 10.1111/j.1365-3040.2006.01520.x CrossRefPubMedGoogle Scholar
  55. Klein T, Hoch G, Yakir D, Körner C (2014) Drought stress, growth and nonstructural carbohydrate dynamics of pine trees in a semi-arid forest. Tree Physiol 34:981–992. doi: 10.1093/treephys/tpu071 CrossRefPubMedGoogle Scholar
  56. Le Goff N, Ottorini J-M (2001) Root biomass and biomass increment in a beech (Fagus sylvatica L.) stand in North-East France. Ann For Sci 58:1–13CrossRefGoogle Scholar
  57. Lebaube S, Le Goff N, Ottorini J-M, Granier A (2000) Carbon balance and tree growth in a Fagus sylvatica stand. Ann For Sci 57:49–61CrossRefGoogle Scholar
  58. LeBauer DS, Treseder KK (2008) Nitrogen limitation of net primary productivity in terrestrial ecosystems is globally distributed. Ecology 89:371–379. doi: 10.1890/06-2057.1 CrossRefPubMedGoogle Scholar
  59. Leuzinger S, Bigler C, Wolf A, Körner C (2009) Poor methodology for predicting large-scale tree die-off. Proc Natl Acad Sci USA 106:E106. doi: 10.1073/pnas.0908053106 PubMedCentralCrossRefPubMedGoogle Scholar
  60. López BC, Gracia CA, Sabaté S, Keenan T (2009) Assessing the resilience of Mediterranean holm oaks to disturbances using selective thinning. Acta Oecologica 35:849–854. doi: 10.1016/j.actao.2009.09.001 CrossRefGoogle Scholar
  61. Lorenz M, Becher G (2012) Forest condition in Europe 2012, technical report of ICP forests, HamburgGoogle Scholar
  62. MartÍnez-Vilalta J, Piñol J, Beven K (2002) A hydraulic model to predict drought-induced mortality in woody plants: an application to climate change in the Mediterranean. Ecol Modell 155:127–147. doi: 10.1016/S0304-3800(02)00025-X CrossRefGoogle Scholar
  63. Maunoury-Danger F, Fresneau C, Eglin T et al (2010) Impact of carbohydrate supply on stem growth, wood and respired CO2 delta13C: assessment by experimental girdling. Tree Physiol 30:818–830. doi: 10.1093/treephys/tpq039 CrossRefPubMedGoogle Scholar
  64. McDowell NG, Sevanto S (2010) The mechanisms of carbon starvation: how, when, or does it even occur at all? New Phytol 186:263–264CrossRefGoogle Scholar
  65. McDowell NG, Pockman WT, Allen CD et al (2008) Mechanisms of plant survival and mortality during drought: why do some plants survive while others succumb to drought? New Phytol 178:719–739. doi: 10.1111/j.1469-8137.2008.02436.x CrossRefPubMedGoogle Scholar
  66. McDowell NG, Beerling DJ, Breshears DD et al (2011) The interdependence of mechanisms underlying climate-driven vegetation mortality. Trends Ecol Evol 26:523–532. doi: 10.1016/j.tree.2011.06.003 CrossRefPubMedGoogle Scholar
  67. Myers JA, Kitajima K (2007) Carbohydrate storage enhances seedling shade and stress tolerance in a neotropical forest. J Ecol 95:383–395. doi: 10.1111/j.1365-2745.2006.01207.x CrossRefGoogle Scholar
  68. Nageleisen LM, Goudet M (2011) Manuel de Notation des dommages forestiers (symptômes, causes, état des cimes), ParisGoogle Scholar
  69. Nardini A, Battistuzzo M, Savi T (2013) Shoot desiccation and hydraulic failure in temperate woody angiosperms during an extreme summer drought. New Phytol 200:322–329. doi: 10.1111/nph.12288 CrossRefPubMedGoogle Scholar
  70. Påhlsson AM (1992) Influence of nitrogen fertilization on minerals, carbohydrates, amino acids and phenolic compounds in beech (Fagus sylvatica L.) leaves. Tree Physiol 10:93–100CrossRefPubMedGoogle Scholar
  71. Pedersen BS (1998) The role of stress in the mortality of midwestern oaks as indicated by growth prior to death. Ecology 79:79–93CrossRefGoogle Scholar
  72. Peuke AD, Rennenberg H (2004) Carbon, nitrogen, phosphorus, and sulphur concentration and partitioning in beech ecotypes (Fagus sylvatica L.): phosphorus most affected by drought. Trees Struct Funct 18:639–648. doi: 10.1007/s00468-004-0335-x CrossRefGoogle Scholar
  73. Pilegaard K, Hummelshøj P, Jensen NO, Chen Z (2001) Two years of continuous CO2 eddy-flux measurements over a Danish beech forest. Agric For Meteorol 107:29–41. doi: 10.1016/S0168-1923(00)00227-6 CrossRefGoogle Scholar
  74. Piper FI (2011) Drought induces opposite changes in the concentration of non-structural carbohydrates of two evergreen Nothofagus species of differential drought resistance. Ann For Sci 68:415–424. doi: 10.1007/s13595-011-0030-1 CrossRefGoogle Scholar
  75. Plaut JA, Yepez EA, Hill J et al (2012) Hydraulic limits preceding mortality in a piñon–juniper woodland under experimental drought. Plant Cell Environ 35:1601–1617CrossRefPubMedGoogle Scholar
  76. Poorter H, Niinemets Ü, Poorter L et al (2009) Causes and consequences of variation in leaf mass per area (LMA): a meta-analysis. New Phytol 182:565–588. doi: 10.1111/j.1469-8137.2009.02830.x CrossRefPubMedGoogle Scholar
  77. Poot P, Veneklaas EJ (2012) Species distribution and crown decline are associated with contrasting water relations in four common sympatric eucalypt species in southwestern Australia. Plant Soil 364:409–423. doi: 10.1007/s11104-012-1452-8 CrossRefGoogle Scholar
  78. Ritchie GA, Hinckley TM (1975) The pressure chamber as an instrument for ecological research. Adv Ecol Res 9:165–254. doi: 10.1016/S0065-2504(08)60290-1 CrossRefGoogle Scholar
  79. Rosas T, Galiano L, Ogaya R et al (2013) Dynamics of non-structural carbohydrates in three Mediterranean woody species following long-term experimental drought. Front Plant Sci 4:1–16. doi: 10.3389/fpls.2013.00400 CrossRefGoogle Scholar
  80. Sala A (2009) Lack of direct evidence for the carbon-starvation hypothesis to explain drought-induced mortality in trees. Proc Natl Acad Sci USA 106:E68. doi: 10.1073/pnas.0904580106 PubMedCentralCrossRefPubMedGoogle Scholar
  81. Sala A, Piper FI, Hoch G (2010) Physiological mechanisms of drought-induced tree mortality are far from being resolved. New Phytol 186:274–281. doi: 10.1111/j.1469-8137.2009.03167.x CrossRefPubMedGoogle Scholar
  82. Sala A, Woodruff DR, Meinzer FC (2012) Carbon dynamics in trees: feast or famine? Tree Physiol 32:764–775. doi: 10.1093/treephys/tpr143 CrossRefPubMedGoogle Scholar
  83. Savi T, Bertuzzi S, Branca S et al (2015) Drought-induced xylem cavitation and hydraulic deterioration: risk factors for urban trees under climate change? New Phytol 205:1106–1116. doi: 10.1111/nph.13112 CrossRefPubMedGoogle Scholar
  84. Scartazza A, Moscatello S, Matteucci G et al (2013) Seasonal and inter-annual dynamics of growth, non-structural carbohydrates and C stable isotopes in a Mediterranean beech forest. Tree Physiol 33:730–742. doi: 10.1093/treephys/tpt045 CrossRefPubMedGoogle Scholar
  85. Sevanto S, McDowell NG, Dickman LT et al (2014) How do trees die? A test of the hydraulic failure and carbon starvation hypotheses. Plant Cell Environ 37:153–161. doi: 10.1111/pce.12141 PubMedCentralCrossRefPubMedGoogle Scholar
  86. Silva DE (2010) Ecologie du hêtre (Fagus sylvatica L.) en marge sud-ouest de son aire de distribution. Université Henri Poincaré, NancyGoogle Scholar
  87. Sparks JP, Black RA (1999) Regulation of water loss in populations of Populus trichocarpa: the role of stomatal control in preventing xylem cavitation. Tree Physiol 19:453–459. doi: 10.1093/treephys/19.7.453 CrossRefPubMedGoogle Scholar
  88. Sperry JS, Donnelly JR, Tyree MT (1988) A method for measuring hydraulic conductivity and embolism in xylem. Plant Cell Environ 11:35–40. doi: 10.1111/j.1365-3040.1988.tb01774.x CrossRefGoogle Scholar
  89. Takahashi K (1996) Plastic response of crown architecture to crowding in understorey trees of two co-dominating conifers. Ann Bot 77:159–164CrossRefGoogle Scholar
  90. Torelli N, Čufar K, Robic D (1986) Some wood anatomical, physiological and silvicultural aspects of silver fir dieback in Slovenia (NW Yugoslavia). Iawa Bull 7:343–350CrossRefGoogle Scholar
  91. Urli M, Porté AJ, Cochard H et al (2013) Xylem embolism threshold for catastrophic hydraulic failure in angiosperm trees. Tree Physiol 33:672–683. doi: 10.1093/treephys/tpt030 CrossRefPubMedGoogle Scholar
  92. Vitasse Y, Delzon S, Dufrêne É et al (2009) Leaf phenology sensitivity to temperature in European trees: do within-species populations exhibit similar responses? Agric For Meteorol 149:735–744. doi: 10.1016/j.agrformet.2008.10.019 CrossRefGoogle Scholar
  93. Wang Q, Iio A, Tenhunen J, Kakubari Y (2008) Annual and seasonal variations in photosynthetic capacity of Fagus crenata along an elevation gradient in the Naeba Mountains, Japan. Tree Physiol 28:277–285. doi: 10.1093/treephys/28.2.277 CrossRefPubMedGoogle Scholar
  94. Wang L, Xu Y, Schjoerring J (2011) Seasonal variation in ammonia compensation point and nitrogen pools in beech leaves (Fagus sylvatica). Plant Soil 343:51–66. doi: 10.1007/s11104-010-0693-7 CrossRefGoogle Scholar
  95. Waring RH (1987) Characteristics of trees predisposed to die. Bioscience 37:569–574CrossRefGoogle Scholar
  96. Wheeler JK, Huggett BA, Tofte AN et al (2013) Cutting xylem under tension or supersaturated with gas can generate PLC and the appearance of rapid recovery from embolism. Plant Cell Environ 36:1938–1949. doi: 10.1111/pce.12139 PubMedGoogle Scholar
  97. Wildhagen H, Dürr J, Ehlting B, Rennenberg H (2010) Seasonal nitrogen cycling in the bark of field-grown Grey poplar is correlated with meteorological factors and gene expression of bark storage proteins. Tree Physiol 30:1096–1110. doi: 10.1093/treephys/tpq018 CrossRefPubMedGoogle Scholar
  98. Wiley E, Huepenbecker S, Casper BB, Helliker BR (2013) The effects of defoliation on carbon allocation: can carbon limitation reduce growth in favour of storage? Tree Physiol 33:1216–1228. doi: 10.1093/treephys/tpt093 CrossRefPubMedGoogle Scholar
  99. Wortemann R, Herbette S, Barigah TS et al (2011) Genotypic variability and phenotypic plasticity of cavitation resistance in Fagus sylvatica L. across Europe. Tree Physiol 31:1175–1182CrossRefPubMedGoogle Scholar
  100. Zhao J, Hartmann H, Trumbore S et al (2013) High temperature causes negative whole-plant carbon balance under mild drought. New Phytol 200:330–339. doi: 10.1111/nph.12400 CrossRefPubMedGoogle Scholar
  101. Zweifel R, Zimmermann L, Zeugin F, Newbery DM (2006) Intra-annual radial growth and water relations of trees: implications towards a growth mechanism. J Exp Bot 57:1445–1459. doi: 10.1093/jxb/erj125 CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Alice Delaporte
    • 1
    • 2
    • 3
  • Stephane Bazot
    • 1
    • 2
    • 3
  • Claire Damesin
    • 1
    • 2
    • 3
  1. 1.Laboratoire Ecologie Systématique et Evolution, OrsayUMR 8079, Université Paris-SudOrsayFrance
  2. 2.Laboratoire Ecologie Systématique et Evolution, OrsayCNRS, UMR 8079OrsayFrance
  3. 3.Laboratoire Ecologie Systématique et EvolutionUMR 8079, AgroParisTechParisFrance

Personalised recommendations