Advertisement

Trees

, Volume 29, Issue 4, pp 1197–1205 | Cite as

Impact of the laurina mutation in Coffea arabica L. on semi-dwarfism, cell number and hormonal profiles in hypocotyls of seedlings growing under daylight

  • Sophie Adler
  • Jean-Luc Verdeil
  • Geneviève Conejero
  • Irina L. Zaharia
  • Amélie Sarrazin
  • Julien Hoareau
  • Isabelle Fock-Bastide
  • Michel Noirot
Original Paper
  • 245 Downloads

Abstract

Key message

Hypocotyl semi-dwarfism in BP was only due to less cell number. Daylight was required to inhibit cell division in the mutant. ABA, IAA and cytokinins would be involved.

Abstract

Coffea arabica ‘Laurina’ is a natural mutant of Coffea arabica ‘Bourbon’ (B) and is known under the trade name ‘Bourbon Pointu’ (BP). Under daylight, the laurina mutation leads to pleiotropic effects, including semi-dwarf hypocotyls. At the opposite, semi-dwarfism of BP seedlings disappeared under darkness conditions. The first step was to describe the morphological impact of the mutation in seedlings growing under daylight by comparison with seedlings growing under darkness. As the hypocotyl length was mainly affected, the second step was to investigate histological modifications in the organ comparing B and BP seedlings growing under daylight. Result of this investigation indicated that the mutation does not impact on cell length. Moreover, cytometry analyses showed absence of endoreduplication. Actually, the mutation influenced the cell number and this effect appeared before the 40th day after sowing. The length difference of hypocotyls between B and BP was due to lower cell number in BP, indicating possible involvement of phytohormones. Investigations showed the decrease of cytokinin and auxin levels in BP compared to B, while the cytokinin/auxin ratio remained constant in both varieties. By contrast, abscisic acid content increased in BP. Concurrently these results indicate the lowering of cell division, due to the mutation.

Keywords

Coffea arabica ‘Laurina’ Hypocotyl semi-dwarfism Cell division Auxin Cytokinin Abscisic acid 

Notes

Author contribution statement

Sophie Adler: she carried out experiments leading to histological and hormonal approaches. She did cytometry experiments, histological measures, statistical analyses, and paper writing. Jean-Luc Verdeil: he coached histological approaches and participated in paper correction. Geneviève Conéjéro: she coached microscope use, and participated in paper correction. Irina L. Zaharia: she coached hormonal dosages in the laboratory and participated in paper correction and English improvement. Amélie Sarrazin: she coached cytometry experiment. Julien Hoareau: he was at the origin of the paper, emphasizing the role of daylight on seedling morphology in the mutant. Isabelle Fock-Bastide: she participated in the paper writing. Michel Noirot: he participated in statistical analyses and paper writing.

Acknowledgments

This study was financially supported by the European Union, the Conseil Régional of Réunion and the French Institut pour la Recherche et le Développement (IRD). The authors thank Dr. Xiumei Han, Vera Cekic and Dang Van for excellent technical assistance. Authors also thank Pr. Charrier for its helpful comments.

Conflict of interest

The authors declare that they have no conflict of interest

Supplementary material

468_2015_1200_MOESM1_ESM.txt (0 kb)
Supplementary material 1 (TXT 0 kb)
468_2015_1200_MOESM2_ESM.txt (0 kb)
Supplementary material 2 (TXT 0 kb)

References

  1. Adler S, Verdeil JL, Lartaud M, Fock-Bastide I, Joët T, Conéjéro G, Noirot M (2014) Morphological and histological impacts of the laurina mutation on fructification and seed characteristics in Coffea arabica L. Trees 28:585–595CrossRefGoogle Scholar
  2. Ahmad M, Lin C, Cashmore AR (1995) Mutations throughout an Arabidopsis blue-light photoreceptor impair blue-light-responsive anthocyanin accumulation and inhibition of hypocotyl elongation. Pl J 8:653–658CrossRefGoogle Scholar
  3. Baker DB, Ray PM (1965) Relation between effects of auxin on cell wall synthesis and cell elongation. Pl Physiol 40:360–368CrossRefGoogle Scholar
  4. Beveridge CA, Murfet IC, Kerhoas L, Sotta B, Miginiac E, Rameau C (1997) The shoot control zeatin riboside export from pea roots. Evidence from the branching mutant rms4. Pl J 11:339–345CrossRefGoogle Scholar
  5. Boylan MT, Quail PH (1991) Phytochrome A overexpression inhibits hypocotyl elongation in transgenic Arabidopsis. Proc Nat Acad Sci 88:10806–10810PubMedCentralPubMedCrossRefGoogle Scholar
  6. Burg SP, Burg EA (1967) Inhibition of polar auxin transport by ethylene. Pl Physiol 42:1224–1228CrossRefGoogle Scholar
  7. Catterou M, Dubois F, Schaller H, Aubanelle L, Vilcot B, Sangwan-Norreel BS, Sangwan RS (2001) Brassinosteroids, microtubules and cell elongation in Arabidopsis thaliana. II. Effects of brassinosteroids on microtubules and cell elongation in the bul1 mutant. Planta 212:673–683PubMedCrossRefGoogle Scholar
  8. Charrier A, Berthaud J (1975) Variation de la teneur en caféine dans le genre Coffea. Café Cacao Thé 19:251–264Google Scholar
  9. Chen CM, Kristopeit SM (1981) Metabolism of cytokinin: deribosylation of cytokinin ribonucleoside by adenine nucleosidase from wheat germ cells. Pl Physiol 68:1020–1023CrossRefGoogle Scholar
  10. Chevalier A (1947) Les caféiers du globe: III. Systématique des caféiers et faux-caféiers maladies et insectes nuisibles, LechevallierGoogle Scholar
  11. Cowling RC, Harberd NP (1999) Gibberellins control Arabidopsis hypocotyl growth via regulation of cellular elongation. J Exp Bot 50:1351–1357CrossRefGoogle Scholar
  12. Cummins WR, Kende H, Raschke K (1971) Specificity and reversibility of the rapid stomatal response to abscisic acid. Planta 99:347–351PubMedCrossRefGoogle Scholar
  13. Da Silva EAA, Toorop PE, Nijsse J, Bewley JD, Hilhorst HWM (2005) Exogenous gibberellins inhibit coffee (Coffea arabica cv Rubi) seed germination and cause cell death in the embryo. J Exp Bot 56:1029–1038PubMedCrossRefGoogle Scholar
  14. Da Silva EAA, Toorop PE, Van Lammeren AAM, Hilhorst HWM (2008) ABA inhibits embryo cell expansion and early cell division events during coffee (Coffea arabica ‘Rubi’) seed germination. Ann Bot 102:425–433PubMedCentralPubMedCrossRefGoogle Scholar
  15. Dolezel J, Binarova J, Lucretti S (1989) Analysis of nuclear DNA content in plant cell by flow cytometry. Biol Plant 31:113–120CrossRefGoogle Scholar
  16. Gajdosova S, Spichal L, Kaminek M, Hoyerova K, Novak O, Dobrev PI, Galuszka P, Kima P, Gaudinova A, Zizkova E, Hanus J, Dancak M, Travnicek B, Pesek B, Krupicka M, Vankova R, Strnad M, Motyka V (2011) Distribution, biological activities, metabolism, and the conceivable function of cis-zeatin-type cytokinins in plants. J Exp Bot 62:2827–2840PubMedCrossRefGoogle Scholar
  17. Galbraith DW, Harkins KR, Maddox JM, Ayres NM, Sharma DP, Firoozabady E (1983) Rapid flow cytometric analysis of the cell cycle in intact plant tissues. Science 220:1049–1051PubMedCrossRefGoogle Scholar
  18. Gendreau E, Traas J, Desnos T, Grandjean O, Caboche M, Hofte H (1997) Cellular basis of hypocotyl growth in Arabidopsis. Pl Physiol 114:295–305CrossRefGoogle Scholar
  19. Hoffmann-Benning S, Kende H (1992) On the role of abscisic acid and gibberellin in the regulation of growth in rice. Pl Physiol 99:1156–1161CrossRefGoogle Scholar
  20. Kawamura H, Kamisaka S, Masuda Y (1976) Regulation of lettuce hypocotyl elongation by gibberellic acid. Correlation between cell elongation, stress-relaxation properties of the cell wall and wall polysaccharide content. Pl Cell Physiol 17:23–24Google Scholar
  21. Krug CA, Carvalho A, Antunes Filho H (1954) Genetica de Coffea. XXI. Hereditariedade dos caracteriscos de Coffea arabica L. var laurina (Smeathman) DC. Bragantia 13:247–255CrossRefGoogle Scholar
  22. Kudo T, Kiba T, Sakakibara H (2010) Metabolism and long-distance translocation of cytokinins. J integr Pl Biol 52:53–60CrossRefGoogle Scholar
  23. Kurakawa T, Ueda N, Maekawa M, Kobayashi K, Kojima M, Nagato Y, Sakakibara H, Kyozuka J (2007) Direct control of shoot meristem activity by a cytokinin-activating enzyme. Nature 445:652–655PubMedCrossRefGoogle Scholar
  24. Kutschera U, Niklas KJ (2013) Cell division and turgor-driven stem elongation in juvenile plants: a synthesis. Plant Sci 207:45–56PubMedCrossRefGoogle Scholar
  25. Lecolier A, Besse P, Charrier A, Tchakaloff TN, Noirot M (2009a) Unraveling the origin of Coffea arabica ‘Bourbon pointu’ from La Réunion: a historical and scientific perspective. Euphytica 168:1–10CrossRefGoogle Scholar
  26. Lecolier A, Verdeil JL, Escoute J, Chrestin H, Noirot M (2009b) Laurina mutation affected Coffea arabica tree size and shape mainly through internode dwarfism. Trees 23:1043–1051CrossRefGoogle Scholar
  27. Lecolier A, Noirot M, Escoute J, Chrestin H, Verdeil JL (2009c) Early effects of the mutation laurina on the shoot apex functioning of coffee tree and analysis of the plastochron phases: relationships with the dwarfism of leaves. Trees 23:673–682CrossRefGoogle Scholar
  28. Lulsdorf MM, Ying Yuan H, Slater SMH, Vandenberg A, Han X, Zaharia LI, Abrams SR (2013) Endogenous hormone profiles during early seed development of C. arietinum and C. anatolicum. Pl Growth Regul 71:191–198CrossRefGoogle Scholar
  29. MacDougal DT (1903) The influence of light and darkness on growth and development. Mem New York Bot Garden 2:1–319Google Scholar
  30. Masuda Y (1990) Auxin-induced cell elongation and cell wall changes. Bot Magaz, Tokyo 103:345–370CrossRefGoogle Scholar
  31. McGaw BA, Horgan R, Heald JK (1985) Cytokinin metabolism and the modulation of cytokinin activity in radish. Phytochem 24:9–13CrossRefGoogle Scholar
  32. Meyer Y, Cooke R (1979) Time course of hormonal control of the first mitosis in tobacco mesophyll protoplasts cultivated in vitro. Planta 147:181–185PubMedCrossRefGoogle Scholar
  33. Miller CO, Skoog F, Von Saltza MH, Strong F (1955) Kinetin, a cell division factor from deoxyribonucleic acid. J Am Chem Soc 77:1392CrossRefGoogle Scholar
  34. Mok MC, Mok DWS, Armstrong DJ (1978) Differential cytokinin structure-activity relationship in Phaseolus. Pl Physiol 61:72–75CrossRefGoogle Scholar
  35. Pineda Rodo A, Brugière N, Vankova M, Malbeck J, Olson JM, Haines SC, Martin RC, Habben JE, Mok DWS, Mok MC (2008) Overexpression of a zeatin O-glucosylation gene in maize leads to growth retardation and tasselseed formation. J Exp Bot 59:2673–2686PubMedCrossRefGoogle Scholar
  36. Redig P, Shaul O, Inzé D, Van Montagu M, Van Onckelen H (1996) Levels of endogenous cytokinins, indole-3-acetic acid and abscisic acid during the cell cycle of synchronized tobacco BY-2 cells. FEBS Lett 391:175–180PubMedCrossRefGoogle Scholar
  37. Riou-Khamlichi C, Huntley R, Jacqmard A, Murray JAH (1999) Cytokinin activation of Arabidopsis cell division through a D-type cyclin. Science 283:1541–1544PubMedCrossRefGoogle Scholar
  38. Schmitz RY, Skoog F, Hecht SM, Bock RM, Leonard NJ (1972) Comparison of cytokinin activities of naturally occurring ribonucleosides and corresponding bases. Phytochem 11:1603–1610CrossRefGoogle Scholar
  39. Smigocki AC, Owens LD (1989) Cytokinin-to-auxin ratios and morphology of shoots and tissues transformed by a chimeric isopentenyl transferase gene. Pl Physiol 91:808–811CrossRefGoogle Scholar
  40. Sondheimer E, Tzou DS (1971) The metabolism of hormones during seed germination and dormancy II. The metabolism of 8-14C-zeatin in bean axes. Pl Physiol 47:516–520CrossRefGoogle Scholar
  41. Srivastava LM, Sawhney VK, Taylor IEP (1975) Gibberellic-acid-induced cell elongation in lettuce hypocotyls. Proc Nat Acad Sci 72:1107–1111PubMedCentralPubMedCrossRefGoogle Scholar
  42. Stuart DA, Durnam DJ, Jones RL (1977) Cell elongation and cell division in elongating hypocotyls sections. Planta 135:249–255PubMedCrossRefGoogle Scholar
  43. Suttle JC, Banowetz GM (2000) Changes in cis-zeatin and cis-zeatin riboside levels and biological activity during potato tuber dormancy. Physiol Plant 109:68–74CrossRefGoogle Scholar
  44. Szekeres M, Németh K, Koncz-Kalman Z, Mathur J, Kauschmann A, Altmann T, Rédei GP, Nagy F, Schell J, Koncz C (1996) Brassinosteroids rescue the deficiency of CYP90, a cytochrome P450, controlling cell elongation and de-etiolation in Arabidopsis. Cell 85:171–182PubMedCrossRefGoogle Scholar
  45. Tokunaga H, Kojima M, Kuroha T, Ishida T, Sugimoto K, Kiba T, Sakakibara H (2012) Arabidopsis lonely guy (LOG) multiple mutants reveal a central role of the LOG-dependent pathway in cytokinin activation. Pl J 69:355–365CrossRefGoogle Scholar
  46. Vanderhoef LN, Dute RR (1981) Auxin-regulated wall loosening and sustained growth in elongation. Pl Physiol 67:146–149CrossRefGoogle Scholar
  47. Vince D (1964) Photomorphogenesis in plant stems. Biol Rev 39:506–533CrossRefGoogle Scholar
  48. Withrow RB (1941) Response of seedlings to various wavebands of low intensity irradiation. Pl Physiol 16:241–256CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Sophie Adler
    • 1
  • Jean-Luc Verdeil
    • 2
  • Geneviève Conejero
    • 3
  • Irina L. Zaharia
    • 4
  • Amélie Sarrazin
    • 5
  • Julien Hoareau
    • 1
  • Isabelle Fock-Bastide
    • 1
  • Michel Noirot
    • 6
  1. 1.Pôle de Protection des PlantesUniversité de la Réunion, UMR Cirad-Université PVBMTSt PierreRéunion, France
  2. 2.Laboratoire PHIV,UMR AGAP INRA/CIRAD/SupAgroMontpellierFrance
  3. 3.Laboratoire PHIV, UMR BPMP INRA/CNRS/SupAgro/UM IIMontpellierFrance
  4. 4.Aquatic and Crop Resource DevelopmentNational Research Council of CanadaSaskatoonCanada
  5. 5.RIO Imaging platformMontpellierFrance
  6. 6.Pôle de Protection des PlantesIRD, UMR Cirad-Université PVBMTSt PierreRéunion, France

Personalised recommendations