Trees

, Volume 29, Issue 1, pp 237–245 | Cite as

Which matters most for the formation of intra-annual density fluctuations in Pinus pinaster: age or size?

  • Filipe Campelo
  • Joana Vieira
  • Giovanna Battipaglia
  • Martin de Luis
  • Cristina Nabais
  • Helena Freitas
  • Paolo Cherubini
Original Paper
Part of the following topical collections:
  1. Tree Rings

Abstract

Key message

A new method is proposed to standardize chronologies of intra-annual density fluctuations to improve their intra-annual climatic signal.

Abstract

In the Mediterranean area, intra-annual density fluctuations (IADFs) are triggered by short-term climatic variations during the growing season. It is known that the formation of these anatomical structures is dependent on age and size, which can represent a problem during the extraction of the environmental signal from IADF chronologies. We present a new method using a two-step approach to remove the effect of tree-ring width from IADF chronologies. The climatic signal of IADF chronologies obtained by the proposed method was compared with previous methods, using 160 Pinus pinaster tree cores from an even-aged stand on the west coast of Portugal. Our results show that the climatic signal of IADF chronologies was strongly affected by the standardization method used, and that it could be improved by removing the effect of the predisposing factors (cambial age and tree-ring width) on IADF formation. Moreover, additional climatic information (previous winter precipitation) was only revealed when the effect of tree-ring width was removed from IADF series. Finally, we propose that this new method should be tested for other species and across larger geographical areas to confirm its capacity to remove noise from IADF chronologies and to improve their intra-annual climatic signal.

Keywords

Ecological wood anatomy Intra-annual density fluctuation Maritime pine Mediterranean climate Standardization 

References

  1. Abe H, Nakai T (1999) Effect of the water status within a tree on tracheid morphogenesis in Cryptomeria japonica D Don. Trees 14:124–129. doi:10.1007/PL00009758 Google Scholar
  2. Battipaglia G, De Micco V, Brand WA, Linke P, Aronne G, Saurer M, Cherubini P (2010) Variations of vessel diameter and δ13C in false rings of Arbutus unedo L. reflect different environmental conditions. New Phytol 188:1099–1112. doi:10.1111/j.1469-8137.2010.03443.x PubMedCrossRefGoogle Scholar
  3. Battipaglia G, DE Micco V, Brand WA, Saurer M, Aronne G, Linke P, Cherubini P (2013) Drought impact on water use efficiency and intra-annual density fluctuations in Erica arborea on Elba (Italy). Plant Cell Environ 37:382–391. doi:10.1111/pce.12160 PubMedCrossRefGoogle Scholar
  4. Bräuning A (1999) Dendroclimatological potential of drought-sensitive tree stands in southern Tibet for the reconstruction of monsoonal activity. IAWA J 20:325–338CrossRefGoogle Scholar
  5. Bunn A (2008) A dendrochronology program library in R (dplR). Dendrochronologia 26:115–124. doi:10.1016/j.dendro.2008.01.002 CrossRefGoogle Scholar
  6. Camarero JJ, Olano JM, Parras A (2010) Plastic bimodal xylogenesis in conifers from continental Mediterranean climates. New Phytol 185:471–480. doi:10.1111/j.1469-8137.2009.03073.x PubMedCrossRefGoogle Scholar
  7. Campelo F, Nabais C, Freitas H, Gutiérrez E (2007) Climatic significance of tree-ring width and intra-annual density fluctuations in Pinus pinea from a dry Mediterranean area in Portugal. Ann For Sci 64:229–238. doi:10.1051/forest CrossRefGoogle Scholar
  8. Campelo F, García-González I, Nabais C (2012) detrendeR—a graphical user interface to process and visualize tree-ring data using R. Dendrochronologia 30:57–60. doi:10.1016/j.dendro.2011.01.010 CrossRefGoogle Scholar
  9. Campelo F, Vieira J, Nabais C (2013) Tree-ring growth and intra-annual density fluctuations of Pinus pinaster responses to climate: does size matter? Trees 27:763–772. doi:10.1007/s00468-012-0831-3 CrossRefGoogle Scholar
  10. Carrer M, Urbinati C (2004) Age-dependent tree-ring growth responses to climate in Larix decidua and Pinus cembra. Ecology 85:730–740. doi:10.1890/02-0478 CrossRefGoogle Scholar
  11. Cherubini P, Gartner BL, Tognetti R, Bräker OU, Schoch W, Innes JL (2003) Identification, measurement and interpretation of tree rings in woody species from mediterranean climates. Biol Rev 78:119–148PubMedCrossRefGoogle Scholar
  12. Copenheaver CA, Pokorski EA, Currie JE, Abrams MD (2006) Causation of false ring formation in Pinus banksiana: a comparison of age, canopy class, climate and growth rate. For Ecol Manage 236:348–355. doi:10.1016/j.foreco.2006.09.020 CrossRefGoogle Scholar
  13. De Luis M, Gričar J, Čufar K, Raventós J (2007) Seasonal dynamics of wood formation: a comparison between pinning, microcoring and dendrometer measurements. IAWA J 28:389–404CrossRefGoogle Scholar
  14. De Luis M, Novak K, Čufar K, Raventós J (2009) Size mediated climate–growth relationships in Pinus halepensis and Pinus pinea. Trees 23:1065–1073. doi:10.1007/s00468-009-0349-5 CrossRefGoogle Scholar
  15. De Luis M, Novak K, Raventós J, Gričar J, Prislan P, Čufar K (2011a) Cambial activity, wood formation and sapling survival of Pinus halepensis exposed to different irrigation regimes. For Ecol Manage 262:1630–1638. doi:10.1016/j.foreco.2011.07.013 CrossRefGoogle Scholar
  16. De Luis M, Novak K, Raventós J, Gričar J, Prislan P, Čufar K (2011b) Climate factors promoting intra-annual density fluctuations in Aleppo pine (Pinus halepensis) from semiarid sites. Dendrochronologia 29:163–169. doi:10.1016/j.dendro.2011.01.005 CrossRefGoogle Scholar
  17. De Micco V, Saurer M, Aronne G et al (2007) Variations of wood anatomy and δ13C within-tree rings of coastal Pinus pinaster showing intra-annual density fluctuations. IAWA J 28:61–74CrossRefGoogle Scholar
  18. De Micco V, Battipaglia G, Brand WA, Linke P, Saurer M, Aronne G, Cherubini P (2012) Discrete versus continuous analysis of anatomical and δ13C variability in tree rings with intra-annual density fluctuations. Trees 26:513–524. doi:10.1007/s00468-011-0612-4 CrossRefGoogle Scholar
  19. De Micco V, Battipaglia G, Cherubini P, Aronne G (2014) Comparing methods to analyse anatomical features of tree rings with and without intra-annual density fluctuations (IADFs). Dendrochronologia 32:1–6CrossRefGoogle Scholar
  20. Dorado Liñán I, Gutiérrez E, Heinrich I, Andreu-Hayles L, Muntán E, Campelo F, Helle G (2012) Age effects and climate response in trees: a multi-proxy tree-ring test in old-growth life stages. Eur J For Res 131:933–944. doi:10.1007/s10342-011-0566-5 CrossRefGoogle Scholar
  21. Esper J, Niederer R, Bebi P, Frank D (2008) Climate signal age effects—evidence from young and old trees in the Swiss Engadin. For Ecol Manage 255:3783–3789. doi:10.1016/j.foreco.2008.03.015 CrossRefGoogle Scholar
  22. Ivković M, Gapare W, Wu H, Espinoza S, Rozenberg P (2013) Influence of cambial age and climate on ring width and wood density in Pinus radiata families. Ann For Sci 70:525–534. doi:10.1007/s13595-013-0290-z CrossRefGoogle Scholar
  23. Kunert N, Schwendenmann L, Hölscher D (2010) Seasonal dynamics of tree sap flux and water use in nine species in Panamanian forest plantations. Agric For Meteorol 150:411–419. doi:10.1016/j.agrformet.2010.01.006 CrossRefGoogle Scholar
  24. Liu C (1986) Rectifying radii on off-center increment cores. For Sci 32:1058–1061Google Scholar
  25. Lupi C, Morin H, Deslauriers A, Rossi S (2010) Xylem phenology and wood production: resolving the chicken-or-egg dilemma. Plant Cell Environ 33:1721–1730. doi:10.1111/j.1365-3040.2010.02176.x PubMedCrossRefGoogle Scholar
  26. Marchand N, Filion L (2012) False rings in the white pine (Pinus strobus) of the Outaouais Hills, Québec (Canada), as indicators of water stress. Can J For Res 42:12–22. doi:10.1139/X11-151 CrossRefGoogle Scholar
  27. Mencuccini M, Grace J, Fioravanti M (1997) Biomechanical and hydraulic determinants of tree structure in Scots pine: anatomical characteristics. Tree Physiol 17:105–113PubMedCrossRefGoogle Scholar
  28. Nabais C, Campelo F, Vieira J, Cherubini P (2014) Climatic signals of tree-ring width and intra-annual density fluctuations in Pinus pinaster and Pinus pinea along a latitudinal gradient in Portugal. Forestry 87:598–605. doi:10.1093/forestry/cpu021 CrossRefGoogle Scholar
  29. Novak K, Luís M, Raventós J, Čufar K (2013a) Climatic signals in tree-ring widths and wood structure of Pinus halepensis in contrasted environmental conditions. Trees 27:927–936. doi:10.1007/s00468-013-0845-5 CrossRefGoogle Scholar
  30. Novak K, Sánchez MAS, Čufar K, Raventós J, de Luis M (2013b) Age, climate and intra-annual density fluctuations in Pinus halepensis in Spain. IAWA J 34:459–474. doi:10.1163/22941932-00000037 CrossRefGoogle Scholar
  31. Olivar J, Bogino SM, Spiecker H, Bravo F (2012) Climate impact on growth dynamic and intra-annual density fluctuations in Aleppo pine (Pinus halepensis) trees of different crown classes. Dendrochronologia 30:35–47. doi:10.1016/j.dendro.2011.06.001 CrossRefGoogle Scholar
  32. Orvis K, Grissino-Mayer H (2002) Standardizing the reporting of abrasive papers used to surface tree-ring samples. Tree-ring Res 58:47–50Google Scholar
  33. Osborn TJ, Briffa KR, Jones PD (1997) Adjusting variance for sample-size in tree-ring chronologies and other regional mean time series. Dendrochronologia 15:89–99Google Scholar
  34. Pereira JS (2002) Pinus pinaster. Pines of silvicultural importance. CABI Publishing, New York, pp 316–328Google Scholar
  35. Rigling A, Waldner PO, Forster T, Bräker OU, Pouttu A (2001) Ecological interpretation of tree-ring width and intraannual density fluctuations in Pinus sylvestris on dry sites in the central Alps and Siberia. Can J For Res 31:18–31. doi:10.1139/cjfr-31-1-18 CrossRefGoogle Scholar
  36. Rigling A, Bräker O, Schneiter G, Schweingruber F (2002) Intra-annual tree-ring parameters indicating differences in drought stress of Pinus sylvestris forests within the Erico-Pinion in the Valais (Switzerland). Plant Ecol 163:105–122CrossRefGoogle Scholar
  37. Rinn F (2003) TSAP-Win: time series analysis and presentation for dendrochronology and related applications. Rinntech, HeidelbergGoogle Scholar
  38. Rozas V, García-González I, Zas R (2011) Climatic control of intra-annual wood density fluctuations of Pinus pinaster in NW Spain. Trees 25:443–453. doi:10.1007/s00468-010-0519-5 CrossRefGoogle Scholar
  39. Vieira J, Campelo F, Nabais C (2009) Age-dependent responses of tree-ring growth and intra-annual density fluctuations of Pinus pinaster to Mediterranean climate. Trees 23:257–265. doi:10.1007/s00468-008-0273-0 CrossRefGoogle Scholar
  40. Vieira J, Campelo F, Nabais C (2010) Intra-annual density fluctuations of Pinus pinaster are a record of climatic changes in the western Mediterranean region. Can J For Res 40:1567–1575. doi:10.1139/X10-096 CrossRefGoogle Scholar
  41. Vieira J, Rossi S, Campelo F, Freitas H, Nabais C (2013) Seasonal and daily cycles of stem radial variation of Pinus pinaster in a drought-prone environment. Agric For Meteorol 180:173–181. doi:10.1016/j.agrformet.2013.06.009 CrossRefGoogle Scholar
  42. Vieira J, Rossi S, Campelo F, Freitas H, Nabais C (2014) Xylogenesis of Pinus pinaster under a Mediterranean climate. Ann For Sci 71:71–80. doi:10.1007/s13595-013-0341-5 CrossRefGoogle Scholar
  43. Wimmer R, Strumia G, Holawe F (2000) Use of false rings in Austrian pine to reconstruct early growing season precipitation. Can J For Res 30:1691–1697. doi:10.1139/cjfr-30-11-1691 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Filipe Campelo
    • 1
  • Joana Vieira
    • 1
  • Giovanna Battipaglia
    • 2
    • 3
  • Martin de Luis
    • 4
  • Cristina Nabais
    • 1
  • Helena Freitas
    • 1
  • Paolo Cherubini
    • 5
  1. 1.Department of Life Sciences, CFE-Centre for Functional EcologyUniversity of CoimbraCoimbraPortugal
  2. 2.Department of Environmental, Biological and Pharmaceutical Sciences and TechnologiesSecond University of NaplesCasertaItaly
  3. 3.Centre for Bio-Archaeology and Ecology, Institut de Botanique, Ecole Pratique des Hautes Etudes (PALECO EPHE)University of Montpellier 2MontpellierFrance
  4. 4.Department of Geography and Regional PlanningUniversity of ZaragozaSaragossaSpain
  5. 5.WSL Swiss Federal Institute for Forest, Snow and Landscape ResearchBirmensdorfSwitzerland

Personalised recommendations