Advertisement

Trees

, Volume 28, Issue 6, pp 1823–1835 | Cite as

Development of a genetic linkage map for Pinus radiata and detection of pitch canker disease resistance associated QTLs

  • P. Moraga-Suazo
  • L. Orellana
  • P. Quiroga
  • C. Balocchi
  • E. Sanfuentes
  • R. W. Whetten
  • R. Hasbún
  • S. Valenzuela
Original Paper
Part of the following topical collections:
  1. Phytopathology

Abstract

Key message

The heritability of genetic resistance of radiata pine against Fusarium circinatum was not clear. We demonstrated that there are at least 3 QTLs that could be involved in this resistance/susceptibility.

Abstract

A genetic linkage map was developed for Pinus radiata, using Amplified Fragment Length Polymorphism (AFLP), Inter-Simple Sequence Repeat (ISSR), Selective Amplification of Microsatellite Polymorphic Loci (SAMPL), and Simple Sequence Repeat (SSR) molecular markers, based on a two-way pseudo-testcross strategy, using 86 individuals of a F1 full-sib family and 787 molecular markers for genotyping. Linkage analysis generated a map of medium to high density for each parent, with 1,060 and 1,258 cM for parents XO and XP, respectively. A total of 458 markers were mapped on 12 linkage groups (LG) in XO and XP, which equals the number of haploid chromosomes present in P. radiata. Analysis of quantitative trait loci (QTL) for resistance against pitch canker disease caused by Fusarium circinatum was made using Bayesian Information Criterion (BIC). In the XO parental map, two groups (LG-1 and LG-9) showed high probabilities for one or more QTLs. Only one group (LG-9) in the XP parental map showed probability for one or more QTLs. The results indicate that resistance to pitch canker is inherited from both parents. These results provide the basis for further studies focused on structure, evolution, and function of the P. radiata genome.

Keywords

Radiata pine Fusarium circinatum Linkage analysis Quantitative resistance Molecular markers 

Notes

Acknowledgments

This work was financed by Genómica Forestal (CORFO, grant number 05CTE04-02) and a PhD grant from Comisión Nacional de Ciencia y Tecnología (23100216) to PM.

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. Aegerter BJ, Gordon TR (2006) Rates of pitch canker induced seedling mortality among Pinus radiata families varying in levels of genetic resistance to Gibberella circinata (anamorph Fusarium circinatum). Forest Ecol Manag 235:14–17CrossRefGoogle Scholar
  2. Alonso R, Bettucci L (2009) First report of the pitch canker fungus Fusarium circinatum affecting Pinus taeda seedlings in Uruguay. Australas Plant Dis Notes 4:91–92Google Scholar
  3. Ball RD (2001) Bayesian methods for quantitative trait loci mapping based on model selection: approximate analysis using the Bayesian Information Criterion. Genetics 159:1351–1364PubMedCentralPubMedGoogle Scholar
  4. Beavis WD (1994) The power and deceit of QTL experiments: lessons from comparative QTL studies. In: Proceedings of the 49th annual corn and sorghum industry research conference. American Seed Trade Association, Washington, pp 250–266Google Scholar
  5. Beeche M, Gonzalez P, Ide S, Sandoval A, Murillo ME (2005) Informativo fitosanitario forestal. Servicio Agrícola y Ganadero 1:1–5Google Scholar
  6. Berry CR, Hepting GH (1959) Pitch canker of southern pines. USDA For. Pest Leaflet No. 35Google Scholar
  7. Bragança H, Diogo E, Moniz F, Amaro P (2009) First report of pitch canker on pines caused by Fusarium circinatum in Portugal. Plant Dis 93(10):1079CrossRefGoogle Scholar
  8. Carlucci A, Colatruglio L, Frisullo S (2007) First report of pitch canker caused by Fusarium circinatum on Pinus halepensis and P. pinea in Apulia (Southern Italy). Plant Dis 91(12):1683CrossRefGoogle Scholar
  9. Chagné D, Lalanne C, Madur D, Kumar S, Frigério JM, Krier C, Decroocq S, Savouré A, Bou-Dagher-Kharrat M, Bertocchi E, Brach J, Plomion C (2002) A high density genetic map of maritime pine based on AFLPs. Ann For Sci 59:627–636CrossRefGoogle Scholar
  10. Collard BCY, Jahufer MZZ, Brouwer JB, Pang ECK (2005) An introduction to markers, quantitative trait loci (QTL) mapping and marker-assisted selection for crop improvement: the basic concepts. Euphytica 142:169–196CrossRefGoogle Scholar
  11. Coutinho T, Steenkamp E, Mongwaketzi K, Wilmot M, Wingfield M (2007) First outbreak of pitch canker in south african pine plantation. Australas Plant Pathol 36:256–261CrossRefGoogle Scholar
  12. Devey ME, Bell JC, Smith DN, Neale DB, Moran GF (1996) A genetic linkage map for Pinus radiata based on RFLP, RAPD, and microsatellite markers. Theor Appl Genet 92:673–679PubMedCrossRefGoogle Scholar
  13. Devey M, Sewell M, Uren T, Neale D (1999) Comparative mapping in loblolly and radiata pine using RFLP and microsatellite markers. Theor Appl Genet 99:656–662PubMedCrossRefGoogle Scholar
  14. Devey M, Bell J, Uren T, Moran G (2002) A set of microsatellite markers for fingerprinting and breeding applications in Pinus radiata. Genome 45:984–989PubMedCrossRefGoogle Scholar
  15. Devey M, Groom K, Nolan M, Bell J, Dudzinski M, Old K, Matheson A, Moran G (2004a) Detection and verification of quantitative trait loci for resistance to Dothistroma needle blight in Pinus radiata. Theor Appl Genet 108:1056–1063PubMedCrossRefGoogle Scholar
  16. Devey M, Carson S, Nolan M, Matheson A, Te Riini C, Hohepa J (2004b) QTL associations for density and diameter in Pinus radiata. Theor Appl Genet 108:516–524PubMedCrossRefGoogle Scholar
  17. Dwinell LD, Adams D, Guerra-Santos JJ, Aquirre JRM (1998) Pitch canker disease of Pinus radiata. Paper 3.7.30 in offered paper abstracts—volume 3. In: Proceedings of the 7th international congress of plant pathology, Edinburgh, ScotlandGoogle Scholar
  18. Echt CS, Nelson CD (1997) Linkage mapping and genome length in eastern white pine (Pinus strobus L.). Theor Appl Genet 94:1031–1037CrossRefGoogle Scholar
  19. Echt CS, Saha S, Krutovsky KV, Wimanalathan K, Erpelding JE, Liang C, Nelson CD (2011) An annotated genetic map of loblolly pine based on microsatellite and cDNA markers. BMC Genet 12:17PubMedCentralPubMedCrossRefGoogle Scholar
  20. Eckert A, Pande B, Ersoz E, Wright H, Rashbrook V, Nicolet Ch, Neale D (2009) High-throughput genotyping and mapping of single nucleotide polymorphisms in loblolly pine (Pinus taeda L.). Tree Genet Genom 5:225–234CrossRefGoogle Scholar
  21. Gerber S, Rodolphe F (1994) An estimation of the genome length of maritime pine (Pinus pinaster Ait). Theor Appl Genet 88:289–292PubMedGoogle Scholar
  22. Gonzalez G (2005) Resultados preliminares del estudio de Fusarium circinatum: conocimiento del patógeno y establecimiento de bases para su control. En: Resúmenes de la XX Silvotecna: Sanidad forestal en un mundo globalizado. Sesión no 13, Concepción, ChileGoogle Scholar
  23. Gordon TR, Storer AJ, Wood DL (2001) The pitch canker epidemic in California. Plant Dis 85:1128–1139CrossRefGoogle Scholar
  24. Gordon TR, Kirkpatrick SC, Aegerter BJ, Wood DL, Storer AJ (2006) Susceptibility of Douglas fir (Pseudotsuga menziesii) to pitch canker, caused by Gibberella circinata. Plant Pathol 55:231–237CrossRefGoogle Scholar
  25. Grattapaglia D, Sederoff R (1994) Genetic linkage maps of Eucalyptus grandis and Eucalyptus urophylla using a pseudo-testcross: mapping strategy and RAPD markers. Genetics 137:1121–1137PubMedCentralPubMedGoogle Scholar
  26. Guerra-Santos J (1998) Pitch canker on Monterey pine in Mexico. In: Devey M, Matheson C, Gordon TR (eds) Current and potential impacts of pitch canker in radiata pine. Proceedings of the IMPACT monterey workshop, Monterey, California, 30 November to 3 December. CSIRO, Collingwood, Victoria, Australia, pp 58–61Google Scholar
  27. Hasbún R, Iturra C, Moraga P, Wachtendorff P, Quiroga P, Valenzuela S (2011) An efficient and reproducible protocol for production of AFLP markers in tree genomes using fluorescent capillary detection. Tree Genet Genom. doi: 10.1007/s11295-011-0463-6 Google Scholar
  28. Hepting GH, Roth ER (1946) Pitch canker, a new disease of some southern pines. J For 44:742–774Google Scholar
  29. Hizume M, Shibata F, Matsusaki Y, Garajova Z (2002) Chromosome identification and comparative karyotypic analices of four Pinus species. Theor Appl Genet 105:491–497PubMedCrossRefGoogle Scholar
  30. Hodge GR, Dvorak WS (2000) Differential responses of Central American and Mexican pine species and Pinus radiata to infection by the pitch canker fungus. New For 19:241–258CrossRefGoogle Scholar
  31. Hulbert SH, Hott TW, Legg EJ, Lincoln SE, Lander ES, Michelmore RW (1988) Genetic analysis of the fungus, Bremia lactucae, using restriction fragment length polymorphisms. Genetics 120:947–958PubMedCentralPubMedGoogle Scholar
  32. Hurme P, Sillanpää M, Repo T, Arjas E, Savolainen O (2000) Genetic basis of climatic adaptation in Scots pine by Bayesian QTL analysis. Genetics 156:1309–1322PubMedCentralPubMedGoogle Scholar
  33. Jacobs A, Coutinho TA, Wingfield MJ, Ahumada R, Wingfield BD (2007) Characterization of the pitch canker fungus, Fusarium circinatum, from Chile. S Afr J Sci 103:253–257Google Scholar
  34. Kayihan GC, Huber DA, Morse AM, White TL, Davis JM (2005) Genetic dissection of fusiform rust and pitch canker disease traits in loblolly pine. Theor Appl Genet 110:948–958PubMedCrossRefGoogle Scholar
  35. Kou Y, Wang S (2010) Broad-spectrum and durability: understanding of quantitative disease resistance. Curr Opin Plan Biol 13:1–5CrossRefGoogle Scholar
  36. Kuang H, Richardson TE, Carson SD, Wilcox PL, Bongarten B (1999) Genetic analysis of inbreeding depression in plus tree 850.055 of Pinus radiata D. Don. 1. Genetic map with distorted markers. Theor Appl Genet 98:697–703CrossRefGoogle Scholar
  37. Kubisiak TL, Nelson CD, Nowak J, Friend AL (2000) Genetic linkage mapping of genomic regions conferring tolerance to high aluminum in slash pine. J Sust For 10:69–78CrossRefGoogle Scholar
  38. Lopez-Zamora I, Bliss C, Jokela EJ, Comerford NB, Grunwald S, Barnard EL, Vasquez GM (2007) Spatial relationships between nitrogen status and pitch canker disease in slash pine planted adjacent to a poultry operation. Environ Pollut 147:101–111PubMedCrossRefGoogle Scholar
  39. Lynch M, Walsh B (1998) Genetics and analysis of quantitative traits. Sinauer Associates Inc, SunderlandGoogle Scholar
  40. Matheson AC, Devey ME, Gordon TR, Werner W, Vogler DR, Balocchi C, Carson MJ (2006) Heritability of response to inoculation by pine pitch canker of seedlings of radiata pine. Aust For J 70:101–106CrossRefGoogle Scholar
  41. Mitchell G, Jones N, Coutinho T (2005) Alternatives to benomyl fungicide in controlling Fusarium circinatum: results from in vitro studies. Forest research shaw research centre, SAPPI, South Africa, pp 1–14 (Document 3)Google Scholar
  42. Moraga-Suazo P, Opazo A, Zaldúa S, Gonzalez G, Sanfuentes E (2011) Evaluation of Trichoderma spp. and Clonostachys spp. strains to control Fusarium circinatum in Pinus radiata seedlings. Chil J Agric Res 71:412–441CrossRefGoogle Scholar
  43. Moraga-Suazo P, Hasbún R, Balocchi C, Valenzuela S (2012) Establishment and optimization of ISSR and SAMPL molecular markers as a tool for breeding programs of Pinus radiata. Bosque (Valdivia) 33(1):93–98CrossRefGoogle Scholar
  44. Morse AM, Nelson CD, Covert SF, Holliday AG, Smith KE, Davis JM (2004) Pine genes regulated by necrotrophic fungus Fusarium circinatum. Theor Appl Genet 109:922–932PubMedCrossRefGoogle Scholar
  45. Muramoto H, Dwinell LD (1990) Pitch canker of Pinus luchuensis in Japan. Plant Dis 74:530CrossRefGoogle Scholar
  46. Plomion C, Durel C-E, O’Malley DM (1996) Genetic dissection of height in maritime pine seedlings raised under accelerated growth conditions. Theor Appl Genet 93:849–858PubMedCrossRefGoogle Scholar
  47. Plomion C, Chagné D, Pot D, Kumar S, Wilcox P, Burdon R, Prat D, Peterson D, Paiva J, Chaumeil P, Vendramin G, Sebastiani F, Nelson C, Echt C, Savolainen O, Kubisiak T, Cervera M, De María N, Islam-Faridi M (2007) In: Genome mapping and molecular breeding in plants, volume 7 forest trees. Chap 2, pp 29–92Google Scholar
  48. Quesada T, Gopal V, Cumbie WP, Eckert AJ, Wegrzyn JL, Neale DB, Goldfarb B, Huber DA, Casella G, Davis JM (2010) Association mapping of quantitative disease resistance in a natural population of loblolly pine (Pinus taeda L.). Genetics 186:677–686PubMedCentralPubMedCrossRefGoogle Scholar
  49. R Development Core Team (2011) R: a language and environment for statistical computing. Vienna, Austria: the R Foundation for Statistical Computing. ISBN: 3-900051-07-0. Available online at http://www.R-project.org/
  50. Raftery AE, Madiganand D, Hoeting JA (1997) Bayesian model averaging for linear regression models. J Am Stat Assoc 92(437):179–191CrossRefGoogle Scholar
  51. Remington DL, Whetten RW, Liu BH, O’Malley DM (1999) Construction of an AFLP genetic map with nearly complete genome coverage in Pinus taeda. Theor Appl Genet 98:1279–1292PubMedCrossRefGoogle Scholar
  52. Rotella A (2005) Manejo del hongo Fusarium circinatum en viveros forestales. En: Resúmenes de la XX Silvotecna: Sanidad forestal en un mundo globalizado. Sesión no 12, Concepción, ChileGoogle Scholar
  53. SAS Institute Inc., (2000) SAS 9.1.3 Help and Documentation, Cary, NC: SAS Institute Inc.,Google Scholar
  54. Schmale D, Gordon T (2003) Variation in susceptibility to pitch canker disease, caused by Fusarium circinatum, in native stands of Pinus muricata. Plant Pathol 52:720–725CrossRefGoogle Scholar
  55. Schweigkofler W, O`Donnell K, Garbelotto M (2004) Detection and quantification of airborne conidia of Fusarium circinatum, the causal agent of pine pitch canker, from two California sites by using a real-time PCR approach cobined with a simple spore trapping method. Appl Environ Microb 70:3512–3520CrossRefGoogle Scholar
  56. Semagn K, Bjornstad A, Ndjiondjop MN (2006) Principles, requirements and prospects of genetics mapping in plants. Afr J Biotechnol 5:2569–2587Google Scholar
  57. Sewell MM, Neale DB (2000) Mapping quantitative traits in forest trees. In: Jain SM, Minocha SC (eds) Molecular biology of woody plants. Kluwer, Dordrecht, pp 407–433CrossRefGoogle Scholar
  58. Shepherd M, Cross M, Maguire T, Dieters M, Williams C, Henry R (2002) Transpecific microsatellites for hard pines. Theor Appl Genet 104:819–827PubMedCrossRefGoogle Scholar
  59. Smith DN, Devey ME (1994) Occurrence and inheritance of microsatellites in Pinus radiata. Genome 37:977–983PubMedCrossRefGoogle Scholar
  60. Stam P (1993) Construction of integrated genetic linkage maps by means of a new computer package: JOINMAP. Plant J 3:739–744CrossRefGoogle Scholar
  61. Steenkamp ET, Rodas CA, Kvas M, Wingfield MJ (2012) Fusarium circinatum and pitch canker of Pinus in Colombia. Australas Plant Pathol 41(5):483–491CrossRefGoogle Scholar
  62. Viljoen A, Wingfield MJ, Marasas WFO (1994) First report of Fusarium subglutinans f. sp. pini on pine seedlings in South Africa. Plant Dis 78:309–312CrossRefGoogle Scholar
  63. Wikler K, Gordon TR (2000) An initial assessment of genetic relationships among populations of Fusarium circinatum in different parts of the world. Can J Bot 78:709–717Google Scholar
  64. Wikler K, Gordon TR, Storer AJ, Wood DL (2003) Pitch Canker. Integrated pest management for home gardeners and landscape professionals. Pest Note 741707:1–5Google Scholar
  65. Wilcox PL, Richardson TE, Corbet GE, Ball RD, Lee JR, Djorovic A, Carson SD (2001) Framework linkage maps of Pinus radiata D. Don based on pseudotestcross markers. For Genet 8:109–117Google Scholar
  66. Wilcox PL, Cato S, McMillan L, Power M, Ball RD, Burdon RD, Echt CS (2004) Patterns of linkage disequilibrium in Pinus radiata. In: Plant and animal genome XII Conf, San Diego, pp W89. http://www.intlpag.org/12/abstracts/W22_PAG12_89.html
  67. Wingfield MJ, Jacobs A, Coutinho TA, Ahumada R, Wingfield BD (2002) First report of the pitch canker fungus, Fusarium circinatum, on pines in Chile. Plant Pathol 51:397CrossRefGoogle Scholar
  68. Wingfield MJ, Hammerbacher A, Ganley R, Steenkamp E, Gordon T, Wingfield B, Coutinho T (2008) Pitch canker caused by Fusarium circinatum—a growing threat to pine plantations and forest worldwide. Austral Plant Pathol 37:319–334CrossRefGoogle Scholar
  69. Xu S (2003) Theoretical basis of the Beavis effect. Genetics 165:2259–2268Google Scholar
  70. Zimin A, Stevens KA, Crepeau MW, Holtz-Morris A, Koriabine M, Marçais G, Puiu D, Roberts M, Wegrzyn JL, de Jong PJ, Neale DB, Salzberg SL, Yorke JA, Langley CH (2014) Sequencing and assembly of the 22-gb loblolly pine genome. Genetics 196:875–890PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • P. Moraga-Suazo
    • 1
  • L. Orellana
    • 1
  • P. Quiroga
    • 1
  • C. Balocchi
    • 2
  • E. Sanfuentes
    • 1
  • R. W. Whetten
    • 3
  • R. Hasbún
    • 4
  • S. Valenzuela
    • 1
  1. 1.Centro de Biotecnología y Facultad de Ciencias Forestales Casilla 160-CUniversidad de ConcepciónConcepciónChile
  2. 2.BIOFORESTConcepciónChile
  3. 3.Department of Forestry and Environmental ResourcesNorth Carolina State UniversityRaleighUSA
  4. 4.Genómica Forestal S.A.ConcepciónChile

Personalised recommendations