, Volume 28, Issue 5, pp 1463–1471 | Cite as

Interannual variations in primary and secondary growth of Nothofagus pumilio and their relationships with climate

  • Amaru MagninEmail author
  • Javier Puntieri
  • Ricardo Villalba
Original Paper


Key message

The aim of this study is to evaluate the relationships between primary and secondary growth as well as the influences of climate variations on both types of growth.


The relationships between apical (or primary) and radial (or secondary) growth, and climatic influences on both types of growth, were evaluated for Nothofagus pumilio (Nothofagaceae), the dominant subalpine tree in Patagonia. We measured the spacing and number of nodes of annual shoots developed in the period 2001–2010 in 40 N. pumilio trees growing near the upper treeline in the northern Patagonian Andes (41°S). Variations in ring width at the base of each trunk were also recorded. Interannual variations in primary and secondary growth were significantly related to each other, and to several climate variables. Mean temperatures in winter and early spring (June–October) prior to the period of shoot extension were positively associated with both primary and secondary growth. In addition, total summer precipitation (December–March) was positively related to shoot extension, whereas mean summer temperature during the previous growth season (January–March) was directly related to radial growth. These climatic influences on N. pumilio growth may play a major role in regulating the expressions of preformation and neoformation.


Tree growth Treeline Precipitation Temperature Preformation Neoformation 


Author contribution statement

Amaru Magnin: field work, sampling design, data analyses and manuscript writing. Javier Puntieri: field work, sampling design and manuscript writing. Ricardo Villalba: sampling design, data analyses and manuscript writing.


The authors thank Dr. Brian Luckman for reviewing the manuscript and the Administración de Parques Nacionales, Argentina, for authorizing the sampling within Nahuel Huapi National Park. This study was partially funded by Universidad Nacional del Comahue (B 138), CONICET (PIP112-200801-1026 and PIP 112-2011010-0809), the Inter-American Institute for Global Change Research (IAI) through CRN2047, supported by and the US National Science Foundation (GEO-0452325), and the Australian Research Council (ARC DP120104320).

Conflict of interest

The authors declare that they have no conflict of interest.


  1. Allen CD, Macalady AK, Chenchouni H, Bachelet D, McDowell N, Vennetier M, Kitzberger T, Rigling A, Breshears DD, Hogg E (2010) A global overview of drought and heat-induced tree mortality reveals emerging climate change risks for forests. Forest Ecol Manag 259(4):660–684. doi: 10.1016/j.foreco.2009.09.001 CrossRefGoogle Scholar
  2. Anderegg WR, Kane JM, Anderegg LD (2013) Consequences of widespread tree mortality triggered by drought and temperature stress. Nat Clim Change 3:30–36. doi: 10.1038/nclimate1635 CrossRefGoogle Scholar
  3. Andreu L, Gutiérrez E, Macias M, Ribas M, Bosch O, Camarero JJ (2007) Climate increases regional tree-growth variability in Iberian pine forests. Global Change Biol 13(4):804–815. doi: 10.1111/j.1365-2486.2007.01322.x Google Scholar
  4. Barthélémy D, Caraglio Y (2007) Plant architecture: a dynamic, multilevel and comprehensive approach to plant form, structure and ontogeny. Ann Bot 99(3):375. doi: 10.1093/aob/mcl260 PubMedCrossRefPubMedCentralGoogle Scholar
  5. Barthélémy D, Puntieri J, Brion C, Raffaele E, Marino J, Martinez P (1999) Características morfológicas y arquitecturales de las especies de Nothofagus Blume (Fagaceae) del norte de la Patagonia Argentina. Bol Soc Arg Bot 34:29–38Google Scholar
  6. Beck CB (2010) An introduction to plant structure and development: plant anatomy for the twenty-first century. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  7. Bell AD (2008) Plant form: an illustrated guide to flowering plant morphology. Timber Press, PortlandGoogle Scholar
  8. Boninsegna J, Argollo J, Aravena J, Barichivich J, Christie D, Ferrero M, Lara A, Le Quesne C, Luckman B, Masiokas M, Morales M, Oliveira J, Roig F, Srur A, Villalba R (2009) Dendroclimatological reconstructions in South America: a review. Palaeogeogr Palaeoclimatol Palaeoecol 281(3):210–228. doi: 10.1016/j.palaeo.2009.07.020 CrossRefGoogle Scholar
  9. Bret-Harte MS, Shaver GR, Chapin FS III (2002) Primary and secondary stem growth in arctic shrubs: implications for community response to environmental change. J Ecol 90(2):251–267CrossRefGoogle Scholar
  10. Camarero J, Palacio S, Montserrat-Martí G (2012) Contrasting seasonal overlaps between primary and secondary growth are linked to wood anatomy in Mediterranean sub-shrubs. Plant Biol. doi: 10.1111/j.1438-8677.2012.00702.x PubMedGoogle Scholar
  11. Campioli M, Leblans N, Michelsen A (2012) Stem secondary growth of tundra shrubs: impact of environmental factors and relationships with apical growth. Arct Antarct Alp Res 44(1):16–25. doi: 10.1657/1938-4246-44.1.16 CrossRefGoogle Scholar
  12. Cochard H, Coste S, Chanson B, Guehl JM, Nicolini E (2005) Hydraulic architecture correlates with bud organogenesis and primary shoot growth in beech (Fagus sylvatica). Tree Physiol 25(12):1545–1552PubMedCrossRefGoogle Scholar
  13. Colin F, Sanjines A, Fortin M, Bontemps J-D, Nicolini E (2012) Fagus sylvatica trunk epicormics in relation to primary and secondary growth. Ann Bot 110(5):995–1005. doi: 10.1093/aob/mcs178 PubMedCrossRefPubMedCentralGoogle Scholar
  14. Conti H (1998) Características climáticas de la Patagonia. In: Correa M (ed) Flora Patagónica, vol 8. INTA, Buenos Aires, pp 31–47Google Scholar
  15. Cook E (1985) A time series analysis approach to treering standardization. Ph.D. Dissertation, University of Arizona, TucsonGoogle Scholar
  16. Davidson CG, Remphrey WR (1994) Shoot neoformation in clones of Fraxinus pennsylvanica in relation to genotype, site and pruning treatments. Trees Struct Funct 8(4):205–212CrossRefGoogle Scholar
  17. Dimitri MJ (1972) La región de los bosques andino-patagónicos: sinopsis general. INTA, Buenos AiresGoogle Scholar
  18. Evert RF (2008) Esau anatomía vegetal. Meristemas, células y tejidos de las plantas: su estructura, función y desarrollo. Omega, BarcelonaGoogle Scholar
  19. Frangi JL, Barrera MD, Richter LL, Lugo AE (2005) Nutrient cycling in Nothofagus pumilio forests along an altitudinal gradient in Tierra del Fuego, Argentina. Forest Ecol Manag 217(1):80–94. doi: 10.1016/j.foreco.2005.05.051 CrossRefGoogle Scholar
  20. Fritts H (1976) Tree rings and climate. Elsevier, New YorkGoogle Scholar
  21. García S, Puntieri J, Vobis G (2006) Morfology and anatomy of the shoot apex of Nothofagus dombeyi (Nothofagaceae) along a year. Bol Soc Arg Bot 41:15–23Google Scholar
  22. Guédon Y, Puntieri J, Sabatier S, Barthélémy D (2006) Relative extents of preformation and neoformation in tree shoots: analysis by a deconvolution method. Ann Bot 98(4):835–844. doi: 10.1093/aob/mcl164 PubMedCrossRefPubMedCentralGoogle Scholar
  23. Hallé F, Oldeman RAA, Tomlinson PB (1978) Tropical trees and forests: an architectural analysis. Springer-Verlag, BerlinCrossRefGoogle Scholar
  24. Hamann A, Wang T (2006) Potential effects of climate change on ecosystem and tree species distribution in British Columbia. Ecology 87(11):2773–2786PubMedCrossRefGoogle Scholar
  25. Heuret P, Meredieu C, Coudurier T, Courdier F, Barthélémy D (2006) Ontogenetic trends in the morphological features of main stem annual shoots of Pinus pinaster (Pinaceae). Am J Bot 93(11):1577–1587. doi: 10.3732/ajb.93.11.1577 PubMedCrossRefGoogle Scholar
  26. Hill RS, Dettmann ME (1996) Origin and Diversificarion of the Genus Nothofagus. In: Veblen TT, Hill RS, Read J (eds) The ecology and biogeography of Nothofagus forests, vol 2. Yale University Press, New Haven, pp 11–24Google Scholar
  27. IPCC (2007) Climate change 2007: synthesis report. Contribution of working groups I, II and III to the fourth assessment report of the intergovernmental panel on climate change. In: Core Writing Team Pachauri RK, Reisinger A (eds). Geneva, pp 104Google Scholar
  28. Kibe T, Masuzawa T (1992) Seasonal changes in the amount of carbohydrates and photosynthetic activity of Pinus pumila Regel on alpine in central Japan. Polar Biol 5:118–124Google Scholar
  29. Kozlowski TT (1971) Growth and development of trees. Seed germination, ontogeny and shoot growth, vol I. Academic Press, LondonGoogle Scholar
  30. Lara A, Aravena JC, Villalba R, Wolodarsky-Franke A, Luckman B, Wilson R (2001) Dendroclimatology of high-elevation Nothofagus pumilio forests at their northern distribution limit in the central Andes of Chile. Can J For Res 31(6):925–936. doi: 10.1139/cjfr-31-6-925 CrossRefGoogle Scholar
  31. Lara A, Villalba R, Wolodarsky-Franke A, Aravena JC, Luckman BH, Cuq E (2005) Spatial and temporal variation in Nothofagus pumilio growth at tree line along its latitudinal range (35 40′–55 S) in the Chilean Andes. J Biogeogr 32(5):879–893. doi: 10.1111/j.1365-2699.2005.01191.x CrossRefGoogle Scholar
  32. Magnin A, Grosfeld J, Barthélémy D, Puntieri J (2012) Bud and shoot structure may relate to the distribution area of South American Proteaceae tree species. Flora Morphol Distrib Funct Ecol Plants 207(8):599–606. doi: 10.1016/j.flora.2012.05.001 CrossRefGoogle Scholar
  33. Parmesan C (2006) Ecological and evolutionary responses to recent climate change. Annu Rev Ecol Evol Syst. doi: 10.2307/annurev.ecolsys.37.091305.30 Google Scholar
  34. Passo A, Puntieri J, Barthélémy D (2002) Trunk and main-branch development in Nothofagus pumilio (Nothofagaceae): a retrospective analysis of tree growth. Can J Bot 80(7):763–772. doi: 10.3732/ajb.2007333 CrossRefGoogle Scholar
  35. Paul-Victor C, Rowe N (2011) Effect of mechanical perturbation on the biomechanics, primary growth and secondary tissue development of inflorescence stems of Arabidopsis thaliana. Ann Bot 107(2):209–218. doi: 10.1093/aob/mcq227 PubMedCrossRefPubMedCentralGoogle Scholar
  36. Puntieri J, Barthélémy D, Martinez P, Raffaele E, Brion C (1998) Annual-shoot growth and branching patterns in Nothofagus dombeyi (Fagaceae). Can J Bot 76(4):673–685. doi: 10.1139/b98-041 Google Scholar
  37. Puntieri J, Raffaele E, Martinez P, Barthélémy D, Brion C (1999) Morphological and architectural features of young Nothofagus pumilio (Poepp. & Endl.) Krasser (Fagaceae). Bot J Linn Soc 130(4):395–410. doi: 10.1111/j.1095-8339.1999.tb00529.x CrossRefGoogle Scholar
  38. Puntieri J, Souza MS, Barthélémy D, Brion C, Nuñez M, Mazzini C (2000) Preformation, neoformation, and shoot structure in Nothofagus dombeyi (Nothofagaceae). Can J Bot 78(8):1044–1054. doi: 10.1139/b00-069 Google Scholar
  39. Rusch VE (1993) Altitudinal variation in the phenology of Nothofagus pumilio in Argentina. Rev Chil Hist Nat 66:131–141Google Scholar
  40. Schulman E (1956) Dendroclimatic changes in semiarid America. University of Arizona Press, TucsonGoogle Scholar
  41. Souza M, Puntieri J, Barthélémy D, Brion C (2000) Bud content and its relation to shoot size and structure in Nothofagus pumilio (Poepp. et Endl.) Krasser (Nothofagaceae). Ann Bot 85(4):547. doi: 10.1006/anbo.1999.1097 CrossRefGoogle Scholar
  42. Srur AM, Villalba R, Villagra PE, Hertel D (2008) Influencias de las variaciones en el clima y en la concentración de C02 sobre el crecimiento de Nothofagus pumilio en la Patagonia. Rev Chil Hist Nat 81(2):239–256CrossRefGoogle Scholar
  43. Stecconi M, Puntieri J, Barthélémy D (2010) An architectural approach to the growth forms of Nothofagus pumilio (Nothofagaceae) along an altitudinal gradient. Botany 88(8):699–709. doi: 10.1139/B10-040 CrossRefGoogle Scholar
  44. Stokes M, Smiley T (1968) An introduction to tree-ring dating. University of Chicago Press, ChicagoGoogle Scholar
  45. Valladares F, Sanchez-Gomez D, Zavala MA (2006) Quantitative estimation of phenotypic plasticity: bridging the gap between the evolutionary concept and its ecological applications. J Ecol 94(6):1103–1116. doi: 10.1111/j.1365-2745.2006.01176.x CrossRefGoogle Scholar
  46. Veblen TT, Holz A, Paritsis J, Raffaele E, Kitzberger T, Blackhall M (2011) Adapting to global environmental change in Patagonia: what role for disturbance ecology? Austral Ecol 36(8):891–903. doi: 10.1111/j.1442-9993.2010.02236.x CrossRefGoogle Scholar
  47. Villalba R, Veblen TT (1998) Influences of large-scale climatic variability on episodic tree mortality in Northern Patagonia. Ecology 79(8):2624–2640. doi:10.1890/0012-9658(1998)079[2624:IOLSCV]2.0.CO;2Google Scholar
  48. Villalba R, Boninsegna JA, Veblen TT, Schmelter A, Rubulis S (1997) Recent trends in tree-ring records from high elevation sites in the Andes of Northern Patagonia. Clim Chang 36(3):425–454. doi: 10.1023/A:1005366317996 CrossRefGoogle Scholar
  49. Villalba R, Lara A, Boninsegna JA, Masiokas M, Delgado S, Aravena JC, Roig FA, Schmelter A, Wolodarsky A, Ripalta A (2003) Large-scale temperature changes across the Southern Andes: 20th-century variations in the context of the past 400 years. Clim Chang 59(1):177–232. doi: 10.1007/978-94-015-1252-7_10 CrossRefGoogle Scholar
  50. Villalba R, Masiokas M, Kitzberger T, Boninsegna J (2005) Biogeographical consequences of recent climate changes in the Southern Andes of Argentina. In: Reasoner HUM (ed) Global changes and mountain regions. Springer, Switzerland, pp 157–168CrossRefGoogle Scholar
  51. Villalba R, Lara A, Masiokas MH, Urrutia R, Luckman BH, Marshall GJ, Mundo IA, Christie DA, Cook ER, Neukom R (2012) Unusual Southern Hemisphere tree growth patterns induced by changes in the Southern Annular Mode. Nat Geosci 5(11):793–798. doi: 10.1038/NGEO1613 CrossRefGoogle Scholar
  52. Walter H, Lieth H (1960) Klimadiagramm-Weltatlas. Gustav Fischer, JenaGoogle Scholar
  53. Wardle P (1998) Comparison of alpine timberlines in New Zealand and the Southern Andes. In: Lynch R (ed) Ecosystems, entomology & plants, vol 48. Royal Society of New Zealand Miscellaneous Publications, Wellington, pp 69–90Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Amaru Magnin
    • 1
    Email author
  • Javier Puntieri
    • 1
    • 2
  • Ricardo Villalba
    • 3
  1. 1.INIBIOMA, CONICET-UNCOMAHUEBarilocheArgentina
  2. 2.Universidad Nacional de Río Negro, Sede AndinaEl BolsónArgentina
  3. 3.IANIGLA, CCT-CONICET-MendozaMendozaArgentina

Personalised recommendations