, Volume 28, Issue 4, pp 1079–1093 | Cite as

Dendrochronological analysis of urban trees: climatic response and impact of drought on frequently used tree species

  • Sten Gillner
  • Achim Bräuning
  • Andreas Roloff
Original Paper


Key message

Distinct species-specific differences were found in the response to temperature, precipitation and the self-calibrated Palmer Drought Severity Index that are confirmed by pointer year analyzes and superposed epoch analyzes.


Trees in urban environments are exposed to heat stress, low air humidity and soil drought. The increasing temperatures and the more frequent heat and drought events will intensify the stress level of urban trees. We applied a dendrochronological approach to evaluate the species-specific suitability under increasing risk of drought of five tree species at highly sealed urban sites in the city of Dresden (Germany). Climate-growth correlation analyses show that temperatures and water availability from April to July in the current year and in summer and autumn of the previous year are the main determining factors for radial growth. However, distinct species-specific differences were found in the response to temperature, precipitation and the self-calibrated Palmer Drought Severity Index. During the study period, the influence of temperature and drought on radial growth during summer months increases for Acer platanoides and Acer pseudoplatanus, whereas no changes occurred for Quercus petraea, Quercus rubra, and P. × hispanica. Pointer year analysis and superposed epoch analyses revealed a species-specific response to extreme climatic events. While for A. platanoides and A. pseudoplatanus a higher number of negative pointer years and significant growth declines in drought years were found, Q. petraea and Q. rubra showed more frequent positive pointer years but no significant growth reductions during drought. Based on these response patterns we classified the studied tree species according to their suitability and drought tolerance for urban sites.


Urban tree species Drought Climate-growth Pointer years Superposed epoch analyzes 



We thank Erik Fritzsche for his assistance during data collection. We extend our thanks to the staff members of offices for Municipal Affairs (Amt für Stadtgrün und Abfallwirtschaft Dresden) and in particular Mr. Steffen Löbel for their administrative support, helpful information and logistic maintenance during the fieldwork. This study was realised with financial support from the Bundesministerium für Bildung und Forschung (BMBF) in the project REGKLAM (

Conflict of interest

Research funder: Bundesministerium für Bildung und Forschung (BMBF) Grant number: 01 LR 0802.


  1. Aranda I, Gil L, Pardos JA (2000) Water relations and gas exchange in Fagus sylvatica L. and Quercus petraea (Mattuschka) Liebl. in a mixed stand at their southern limit of distribution in Europe. Trees 14:344–352CrossRefGoogle Scholar
  2. Armson D, Stringer P, Ennos AR (2012) The effect of tree shade and grass on surface and globe temperatures in an urban area. Urban For Urban Green 11:245–255CrossRefGoogle Scholar
  3. Arnfield AJ (2003) Two decades of urban climate research: a review of turbulence exchanges of energy and water, and the urban heat island. Int J Climatol 23:1–26CrossRefGoogle Scholar
  4. Bannister P, Maegli T, Dickinson KJM, Halloy SRP, Knight A, Lord JM, Mark AF, Spencer KL (2005) Will loss of snow cover during climatic warming expose New Zealand alpine plants to increased frost damage? Oecologia 144:245–256PubMedCrossRefGoogle Scholar
  5. Barbaroux C, Bréda N (2002) Contrasting distribution and seasonal dynamics of carbohydrate reserves in stem wood of adult ring-porous sessile oak and diffuse-porous beech trees. Tree Physiol 22:1201–1210PubMedCrossRefGoogle Scholar
  6. Bartens J, Grissino-Mayer HD, Day SD, Wiseman PE (2012) Evaluating the potential for dendrochronological analysis of live oak (Quercus virginiana Mill.) from the urban and rural environment—An explorative study. Dendrochron 30:15–21CrossRefGoogle Scholar
  7. Battipaglia G, Marzaioli F, Lubritto C, Altieri S, Strumia S, Cherubini P, Cotrufo MF (2010) Traffic pollution affects tree-ring width and isotopic composition of Pinus pinea. Sci Total Environ 408:586–593PubMedCrossRefGoogle Scholar
  8. Beck W, Müller J (2006) Impact of heat and drought on tree and stand vitality—dendroecological methods and first results from level II-plots in southern Germany. Schriftenreihe aus der Forstlichen Fakultät der Universität Göttingen und der Nordwestdeutschen Forstlichen Versuchsanstalt 142:120–127Google Scholar
  9. Bernhofer C, Matschullat J, Bobeth A (2009) Das Klima in der REGKLAM-Modelregion Dresden. Regklam Publikationsreihe Heft 1, Rhombos, BerlinGoogle Scholar
  10. Bhaduri B, Minner M, Tatalovich S, Harbor J (2001) Long-term hydrologic impact of urbanization: a tale of two models. J Water Res Plan Manag 127:13–19CrossRefGoogle Scholar
  11. Biondi F, Waikul K (2004) DENDROCLIM2002: a C++ program for statistical calibration of climate signals in tree-ring chronologies. Comp Geosci 30:303–311CrossRefGoogle Scholar
  12. Blume H-P (2000) Böden städtisch-industrieller Verdichtungsräume. In: Blume H-P, Felix-Henningsen P, Fischer WR, Frede HG, Horn R, Stahr K (eds) Handbuch der Bodenkunde. Ecomed, Landsberg, pp 154–171Google Scholar
  13. Bräker OU (2002) Measuring and data processing in tree-ring research—a methodological introduction. Dendrochron 20:203–216CrossRefGoogle Scholar
  14. Bühler O, Nielsen CN, Kristoffersen P (2006) Growth and phenology of established Tilia cordata street trees in response to different irrigation regimes. Arboric Urban For 31:3–9Google Scholar
  15. Bukata AR, Kyser TK (2008) Tree-ring elemental concentrations in oak do not necessarily passively record changes in bioavailability. Sci Total Environ 390:275–286PubMedCrossRefGoogle Scholar
  16. Bunn AG (2008) A dendrochronology program library in R (dplR). Dendrochron 26:115–124CrossRefGoogle Scholar
  17. Büntgen U, Frank DC, Schmidhalter M, Neuwirth B, Seifert M, Esper J (2006) Growth/climate response shift in a long subalpine spruce chronology. Trees 20:99–110CrossRefGoogle Scholar
  18. Cedro A, Nowak G (2006) Effects of climatic conditions on annual tree ring growth of the Platanus × hispanica ‘Acerifolia’ under urban conditions of Szczecin. Dendrobiology 55:11–17Google Scholar
  19. Chaar H, Colin F (1999) Impact of late frost on height growth in young sessile oak regenerations. Ann For Sci 56:417–429CrossRefGoogle Scholar
  20. Chen ZJ, He XY, Chen W, Shao XM, Sun Y, Tao DL (2006) Solar activity, global surface air temperature anomaly and Pacific Decadal Oscillation signals observed in urban outskirts tree ring records from Shenyang, China. Adv Space Res 38:2272–2284CrossRefGoogle Scholar
  21. Chen ZJ, He XY, Cui M, Davi N, Zhang X, Chen W, Sun Y (2008) The effect of anthropogenic activities on the reduction of urban tree sensitivity to climatic change: dendrochronological evidence from Chinese pine in Shenyang city. Trees 25:393–405CrossRefGoogle Scholar
  22. Ciais Ph, Reichstein M, Viovy N, Granier A, Oglee J, Allard V, Aubignet M, Buchmann N, Bernhofer Chr, Carrara A, Chevallier F, De Noblet N et al (2005) European-wide reduction in primary productivity caused by the heat and drought in 2003. Nature 437:529–533PubMedCrossRefGoogle Scholar
  23. Conway TM (2007) Impervious surface as an indicator of pH and specific conductance in the urbanizing coastal zone of New Jersey, USA. J Environ Manag 85:308–316CrossRefGoogle Scholar
  24. Cook ER, Holmes RL (1986) Tree-ring chronologies of western North America: California, eastern Oregon and northern Great Basin. Chronology Series 6. In: Holmes RL, Adams RK, Fritts HC (eds) User manual for computer program ARSTAN. University of Arizona, Tucson, pp 50–57Google Scholar
  25. Cropper JP (1979) Tree-ring skeleton plotting by computer. Tree Ring Bull 39:47–59Google Scholar
  26. Demchik MC, Sharpe WE (2000) The effect of soil nutrition, soil acidity and drought on northern red oak (Quercus rubra L.) growth and nutrition on Pennsylvania sites with high and low red oak mortality. For Ecol Manag 136:199–207CrossRefGoogle Scholar
  27. Dongarra G, Varrica D (2002) Delta C-13 variations in tree rings as an indication of severe changes in the urban air quality. Atmos Environ 36:5887–5896CrossRefGoogle Scholar
  28. Dujesiefken D, Drenou Ch, Oven P, Stobbe H (2005) Arboricultural practices. In: Konijnendijk CC, Nilsson K, Randrup TB, Schipperijn J (eds) Urban forests and trees. Springer, Berlin, pp 419–441CrossRefGoogle Scholar
  29. Eckstein D, Krause C (1989) Dendrochronological studies on spruce trees to monitor environmental changes around Hamburg. IAWA Bull 10:175–182CrossRefGoogle Scholar
  30. Eckstein D, Breyne A, Aniol RW, Liese W (1981) Dendroklimatologische Untersuchungen zur Entwicklung von Straßenbäumen. Forstw Cbl 100:381–396CrossRefGoogle Scholar
  31. Frey S (2002) Bodenkundliche Untersuchung an ausgewählten Straßenbaumstandorten in Dresden. Hochschule für Technik und Wirtschaft Dresden (FH). Unpublished Master ThesisGoogle Scholar
  32. Friedrichs DA, Trouet V, Büntgen U, Frank DC, Esper J, Neuwirth B, Löffler J (2009) Species-specific climate sensitivity of tree growth in Central-West Germany. Trees 23:729–739CrossRefGoogle Scholar
  33. Fritts HC (1976) Tree-rings and climate. Academic press, LondonGoogle Scholar
  34. Gasson PE, Cutler DF (1990) Tree root plate morphology. Arboric J 14:193–264CrossRefGoogle Scholar
  35. Genet H, Bréda N, Dufrêne H (2010) Age-related variation in carbon allocation at tree and stand scales in beech (Fagus sylvatica L.) and sessile oak (Quercus petraea (Matt.) Liebl.) using a chronosequence approach. Tree Physiol 30:177–192PubMedCrossRefGoogle Scholar
  36. Gillner S, Vogt J, Roloff A (2013) Climatic response and impacts of drought on oaks at urban and forest sites. Urb For Urb Green 12:597–605Google Scholar
  37. Gregorová B, Černý K, Holub V, Strnadová V (2010) Effects of climatic factors and air pollution on damage of London plane (Platanus hispanica Mill.). Hortic Sci 37:109–117Google Scholar
  38. Hacke U, Sauter JJ (1996) Xylem dysfunction during winter and recovery of hydraulic conductivity in diffuse-porous and ring-porous trees. Oecologia 105:435–439CrossRefGoogle Scholar
  39. Hardy JP, Groffman PM, Fitzhugh RD, Henry KS, Welman AT, Demers JD, Fahey TJ, Driscoll CT, Tierney GL, Nolan S (2001) Snow depth manipulation and its influence on soil frost and water dynamics in a northern hardwood forest. Biogeochemistry 56:151–174CrossRefGoogle Scholar
  40. Hausendorf E (1940) Frostschäden an Eichen. Zeitschrift für Forst- und Jagdwesen 72:3–35Google Scholar
  41. He X, Chen Z, Chen W, Shao X, He H, Sun Y (2007) Solar activity, global surface air temperature anomaly and Pacific Decadal Oscillation recorded in urban tree rings. Ann For Sci 64:743–756CrossRefGoogle Scholar
  42. Holmes RL (1983) Computer-assisted quality control in tree-ring dating and measurement. Tree Ring Bull 43:69–78Google Scholar
  43. Holmes RL, Adams RK, Fritts HC (1986) Tree-ring chronologies of western North America: California, eastern Oregon and northern Great Basin with procedures used in the chronology development work including users manuals for computer programs COFECHA and ARSTAN, Chronology Series VI. Laboratory of Tree-Ring Research, University of Arizona, Tuscon, ArizonaGoogle Scholar
  44. Kern Z, Popa I (2007) Climate-growth relationship of tree species from a mixed stand of Apuseni Mts, Romania. Dendrochronologia 24:109–115CrossRefGoogle Scholar
  45. Kint V, Aertsen W, Campioli M, Vansteenkiste D, Delcloo A, Muys B (2012) Radial growth change of temperate tree species in response to altered regional climate and air quality in the period 1901–2008. Clim Change 115:343–363CrossRefGoogle Scholar
  46. Kirchner B (1999) Planungsrelevante Ergebnisse zum Stadtklima von Dresden sowie Erfahrungen zum Stadtklima von Dresden sowie Erfahrungen bei der Nutzung. Wiss. Mitt. Inst. Meteorol. Univ Leipzig u Inst für Troposhärenforschg Leipzig 13:126–141Google Scholar
  47. Konijnendijk CC (2003) A decade of urban forestry in Europe. For Policy Econ 5:173–186CrossRefGoogle Scholar
  48. Landeshauptstadt Dresden (ed.) (2012) Amt für Stadtgrün und Abfallwirtschaft. Straßenbaumkataster der Landeshauptstadt Dresden, Stadtentwicklung und Umwelt. [2012-10-10]Google Scholar
  49. Lebaube S, Le Goff N, Ottorini JM, Granier A (2000) Carbon balance and tree growth in a Fagus sylvatica stand. Ann For Sci 57:49–61CrossRefGoogle Scholar
  50. Lebourgeois F, Cousseau G, Ducos Y (2004) Climate-tree-growth relationships of Quercus petraea Mill stand in the Forest of Bercé (Futaie des Clos, Sarthe, France). Ann For Sci 61:361–372CrossRefGoogle Scholar
  51. Lebourgeois F, Bréda N, Ulrich E, Granier A (2005) Climate-tree-growth relationships of European beech (Fagus sylvatica L.) in the French Permanent Plot Network (RENECOFOR). Trees 19:385–401CrossRefGoogle Scholar
  52. Leuschner C, Backes K, Hertel D, Schipka F, Schmitt U, Terborg O, Runge M (2001) Drought responses at leaf, stem and fine root levels of competitive Fagus sylvatica L. and Quercus petraea (Matt.) Liebl. trees in dry and wet years. For Ecol Manag 149:33–46CrossRefGoogle Scholar
  53. Leuzinger S, Vogt R, Körner C (2010) Tree surface temperature in an urban environment. Agric For Meteorol 150:56–62CrossRefGoogle Scholar
  54. Löbel S (2011) Die Straßenbaumartenverwendung in Dresden—Rück- und Ausblick. In: Roloff A, Thiel D, Weiss H (eds) Aktuelle Fragen der Baumpflege, Baumverwendung und Jungbaumpflege. Forstw Beitr Tharandt/Contrib For Sc Beiheft 10:112–131Google Scholar
  55. Lough JM, Fritts HC (1987) An assessment of the possible effects of volcanic eruptions on North American climate using tree-ring data, 1602 to 1900 A.D. Clim Change 10:219–239CrossRefGoogle Scholar
  56. Marion L, Gričar J, Oven P (2007) Wood formation in urban Norway maple trees studied by the micro-coring method. Dendrochronologia 25:97–102CrossRefGoogle Scholar
  57. Martin-Benito D, Kint V, del Río M, Muys B, Cañellas I (2011) Growth responses of West-Mediterranean Pinus nigra to climate change are modulated by competition and productivity: past trends and future perspectives. For Ecol Manag 262:1030–1040CrossRefGoogle Scholar
  58. McPherson EG, Muchnick J (2005) Effects of street tree shade on asphalt concrete pavement performance. Arboric Urban For 31:303–310Google Scholar
  59. Meyer FH (ed) (1982) Bäume in der Stadt. Ulmer, StuttgartGoogle Scholar
  60. Michelot A, Bréda N, Damesin C, Dufrêne E (2012) Differing growth responses to climatic variations and soil water deficits of Fagus sylvatica, Quercus petraea and Pinus sylvestris in a temperate forest. For Ecol Manag 265:161–171CrossRefGoogle Scholar
  61. Mueller EC, Day TA (2005) The effect of urban ground cover on microclimate, growth and leaf gas exchange of oleander in Phoenix, Arizona. Int J Biometeorol 49:244–255PubMedCrossRefGoogle Scholar
  62. Mund M, Kutsch W, Wirth C, Kahl T, Knohl A, Skomarkova M, Schulze E (2010) The influence of climate and fructification on the inter-annual variability of stem growth and net primary productivity in an old-growth, mixed beech forest. Tree Physiol 30:689–704PubMedCrossRefGoogle Scholar
  63. Neuwirth B, Esper J, Schweingruber FH, Winiger M (2004) Site ecological differences to the climatic forcing of spruce pointer years from the Lötschental, Switzerland. Dendrochronologia 21:69–78CrossRefGoogle Scholar
  64. Neuwirth B, Schweingruber FH, Winiger M (2007) Spatial patterns of central European pointer years from 1901 to 1971. Dendrochronologia 24:79–89CrossRefGoogle Scholar
  65. Orwig DA, Abrams MD (1997) Variation in radial growth responses to drought among species, site, and canopy strata. Trees 11:474–484CrossRefGoogle Scholar
  66. Pauleit S, Jones N, Garcia-Martin G, Garcia-Valdecantos JL, Riviere LM, Vidal-Beaudet L, Bodson M, Randrup TB (2002) Tree establishment practise in towns and cities—results from a European survey. Urban For Urban Green 1:83–96CrossRefGoogle Scholar
  67. Pederson N, Cook ER, Jacoby GC, Peteet DM, Griffin KL (2004) The influence of winter temperatures on the annual radial growth of six northern range margin tree species. Dendrochronologia 22:7–29CrossRefGoogle Scholar
  68. Petersen A, Eckstein D, Liese W (1982) Holzbiologische Untersuchungen über den Einfluss von Auftausalz auf Hamburger Strassenbäume. Forstw Cbl 101:353–365CrossRefGoogle Scholar
  69. Piovesan G, Adams JM (2001) Masting behaviour in beech: linking reproduction and climatic variation. Can J Bot 79:1039–1047Google Scholar
  70. Piovesan G, Birnabei M, Di Filippo A, Romagnoli M, Schirone B (2003) A long-term tree ring beech chronology from a high-elevation old-growth forest of Central Italy. Dendrochronologia 21:13–22CrossRefGoogle Scholar
  71. Rebetez M, Mayer H, Dupont O, Schnindler D, Gartner K, Kropp J, Menzel A (2006) Heat and drought 2003 in Europe: a climate synthesis. Ann For Sci 63:567–575CrossRefGoogle Scholar
  72. Rinn F (2003) TSAP-Win: time series analysis and presentation for dendrochronology and related applications. Version 0.55 User reference. Heidelberg, Germany (
  73. Rinn F (2005) TSAP reference manualGoogle Scholar
  74. Roberts J, Jackson N, Smith M (2006) Tree roots in the built environment. The Stationery Office, NorwichGoogle Scholar
  75. Roloff A (1989) Kronenentwicklung und Vitalitätsbeurteilung ausgewählter Baumarten der gemäßigten Breiten. Sauerländer, Frankfurt am MainGoogle Scholar
  76. Roloff A (1999) Tree vigor and branching pattern. J For Sci 45:206–216Google Scholar
  77. Roloff A (2013) Bäume in der Stadt. Ulmer, StuttgartGoogle Scholar
  78. Sæbø A, Benedikz T, Randrup TB (2003) Selection of trees for urban forestry in the Nordic countries. Urban For Urban Green 2:101–114CrossRefGoogle Scholar
  79. Sæbø A, Zelimir B, Ducatillion C, Hatzistathis A, Lagerström T, Supuka J, Garcis-Valdecantos JL, Rego F, Slycken J (2005) The selection of plant materials for street trees, park trees and urban woodlands. In: Konijnendijk CC, Nilsson K, Randrup TB, Schipperijn J (eds) Urban forests and trees. Springer, Berlin, pp 257–280CrossRefGoogle Scholar
  80. Santini A, Bottacci A, Gellini R (1994) Preliminary dendroecological survey on pedunculate oak (Quercus robur L.) stands in Tuscany (Italy). Ann For Sci 51:1–10CrossRefGoogle Scholar
  81. Scharnweber T, Manthey M, Criegee C, Bauwe A, Schröder C, Wilmking M (2011) Drought matters—declining precipitation influences growth of Fagus sylvatica L. and Quercus robur L. in north-eastern Germany. For Ecol Manag 262:947–961CrossRefGoogle Scholar
  82. Schipka F (2003) Blattwasserzustand und Wasserumsatz von vier Buchenwäldern entlang eines Niederschlagsgradienten in Mitteldeutschland. Dissertation, Georg-August-Universität GöttingenGoogle Scholar
  83. Schweingruber FH (1996) Tree rings and environment. Dendroecology. Birmensdorf, Swiss Federal Institute for Forest, Snow and Landscape Research. Haupt, Bern, Stuttgart, ViennaGoogle Scholar
  84. Schweingruber FH (2007) Wood structure and environment. Springer, BerlinGoogle Scholar
  85. Schweingruber FH, Eckstein D, Serre-Bachet F, Bräker OU (1990) Identification, presentation and interpretation of event years and pointer years in dendrochronology. Dendrochronologia 8:9–38Google Scholar
  86. Sieghardt M, Mursch-Radlgruber E, Paoletti E, Couenberg E, Dimitrakopoulus A, Rego F, Hatzistathis A, Randrup TB (2005) The abiotic urban environment: impact of urban growing conditions on urban vegetation. In: Konijnendijk CC, Nilsson K, Randrup TB, Schipperijn J (eds) Urban forests and trees. Springer, Berlin, pp 281–323CrossRefGoogle Scholar
  87. SMUL (Sächsisches Staatsministerium für Umwelt und Landwirtschaft (ed) (2008) Waldzustandsbericht 2008—Waldschadensbericht nach § 58 SächsWaldGGoogle Scholar
  88. Speer JH (2001) Oak mast history from dendrochronology: A new technique demonstrated in the Southern Appalachian Region. Dissertation, University of Tennessee KnoxvilleGoogle Scholar
  89. Stokes MA, Smiley LS (1968) An introduction to tree-ring dating. The University of Chicago Press, ChicagoGoogle Scholar
  90. Swoczyna T, Kalaji MH, Pietkiewicz S, Borowski J, Zaraś-Januszkiewicz E (2010) Photosynthetic apparatus efficiency of eight tree taxa as an indicator of their tolerance to urban environments. Dendrobiology 63:65–75Google Scholar
  91. Tyree MT, Cochard H (1996) Summer and winter embolism in oak: impact on water relations. Ann For Sci 53:173–180CrossRefGoogle Scholar
  92. Tyrväinen L, Pauleit S, Seeland K, de Vries S (2005) Benefits and uses of urban forests and tress. In: Konijnendijk CC, Nilsson K, Randrup TB, Schipperijn J (eds) Urban forests and trees. Springer, Berlin, pp 81–114CrossRefGoogle Scholar
  93. van der Schrier G, Briffa KR, Jones PD, Osborn TJ (2006) Summer moisture variability across Europe. J Clim 19:2818–2834CrossRefGoogle Scholar
  94. von Lührte A (1991) Dendroökologische Untersuchung an Kiefern und Eichen in den stadtnahen Berliner Forsten. Landschaftsentwicklung und Umweltforschung, Schriftenreihe des Fachbereichs Landschaftsentwicklung der TU Berlin, BerlinGoogle Scholar
  95. Wells N, Goddard S, Hayes MJ (2004) A self-calibrating palmer drought severity index. J Clim 17:2335–2351CrossRefGoogle Scholar
  96. Wigley TML, Briffa KR, Jones PD (1984) On the average value of correlated time series with applications in dendroclimatology and hydrometeorology. J Clim Appl Meteol 23:201–213CrossRefGoogle Scholar
  97. Wilmking M, Myers-Smith I (2008) Changing climate sensitivity of black spruce (Picea mariana Mill.) in a peatland-forest landscape in interior Alaska. Dendrochronologia 25:167–175CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Institute of Forest Botany and Forest ZoologyTU DresdenTharandtGermany
  2. 2.Institute of GeographyFriedrich-Alexander-University, Erlangen-NurembergErlangenGermany

Personalised recommendations