Trees

, Volume 28, Issue 3, pp 819–829 | Cite as

Mountain forest growth response to climate change in the Northern Limestone Alps

  • Claudia Hartl-Meier
  • Christoph Dittmar
  • Christian Zang
  • Andreas Rothe
Original Paper

Abstract

Key message

Growth response to climate differs between species and elevation. Fir is the most drought-tolerant species. The mountain forests are robust to the climatic changes until now.

Abstract

Alpine mountain forests provide a wide range of ecological and socio-economic services. Climate change is predicted to challenge these forests, but there are still considerable uncertainties how these ecosystems will be affected. Here, we present a multispecies tree-ring network of 500 trees from the Berchtesgaden Alps (Northern Limestone Alps, Southeast Germany) in order to assess the performance of native mountain forest species under climate change conditions. The dataset comprises 180 spruce, 90 fir, 110 larch and 120 beech trees from different elevations and slope exposures. We analyse the species with respect to: (1) the general growth/climate response; (2) the growth reaction (GR) during the hot summer in 2003 and (3) the growth change (GC) resulting from increasing temperatures since the 1990s. Spruce is identified as the most drought-sensitive species at the lower elevations. Fir shows a high drought tolerance and is well suited with regard to climate change. Larch shows no clear pattern, and beech remains unaffected at lower elevations. The unprecedented temperature increase of the last decades did not induce any distinct GC. The mountain forests of the Berchtesgaden Alps appear to be robust within the climatic changes until now.

Keywords

Tree-rings Climate signal Radial growth Elevational belts Dendroecology Berchtesgaden Alps 

Supplementary material

468_2014_994_MOESM1_ESM.pdf (491 kb)
Supplementary material 1 (PDF 490 kb)

References

  1. Affolter P, Büntgen U, Esper J, Rigling A, Weber P, Luterbacher J, Frank DC (2010) Inner Alpine conifer response to 20th century drought swings. Eur J For Res 129(3):289–298. doi:10.1007/s10342-009-0327-x CrossRefGoogle Scholar
  2. Auer I, Böhm R, Jurkovic A, Lipa W, Orlik A, Potzmann R, Schöner W, Ungersböck M, Matulla C, Briffa KR, Jones PD, Efthymiadis D, Brunetti M, Nanni T, Maugeri M, Mercalli L, Mestre O, Moisselin J, Begert M, Müller-Westermeier G, Kveton V, Bochnicek O, Stastny P, Lapin M, Szalai S, Szentimrey T, Cegnar T, Dolinar M, Gajic-Capka M, Zaninovic K, Majstorovic Z, Nieplova E (2007) HISTALP—historical instrumental climatological surface time series of the Greater Alpine Region. Int J Climatol 27:17–46. doi:10.1002/joc.1377 CrossRefGoogle Scholar
  3. Babst F, Poulter B, Trouet V, Tan K, Neuwirth B, Wilson RJS, Carrer M, Grabner M, Tegel W, Levanič T, Panayotov M, Urbinati C, Bouriaud O, Ciais P, Frank DC, Sykes MT (2013) Site- and species-specific responses of forest growth to climate across the European continent. Glob Ecol Biogeogr. doi:10.1111/geb.12023 Google Scholar
  4. Battipaglia G, Saurer M, Cherubini P, Siegwolf RT, Cotrufo MF (2009) Tree rings indicate different drought resistance of a native (Abies alba Mill.) and a nonnative (Picea abies (L.) Karst.) species co-occurring at a dry site in Southern Italy. Ecol Manage 257(3):820–828. doi:10.1016/j.foreco.2008.10.015 CrossRefGoogle Scholar
  5. Björnsen A, Huber UM, Reasoner MA, Messerli B, Bugmann HK (2005) Future research directions. In: Huber UM, Bugmann HK, Reasoner MA (eds) Global change and mountain regions. An overview of current knowledge. Springer, Dordrecht, pp 637–650CrossRefGoogle Scholar
  6. Bolte A, Ammer C, Löf M, Madsen P, Nabuurs G, Schall P, Spathelf P, Rock J (2009) Adaptive forest management in central Europe: climate change impacts, strategies and integrative concept. Scand J For Res 24(6):473–482. doi:10.1080/02827580903418224 CrossRefGoogle Scholar
  7. Bugmann HK, Zierl B, Schumacher S (2005) Projecting the impacts of climate change on mountain forests and landsapes. In: Huber UM, Bugmann HK, Reasoner MA (eds) Global change and mountain regions. An overview of current knowledge. Springer, Dordrecht, pp 477–487CrossRefGoogle Scholar
  8. Bunn AG, Korpela M, Biondi F, Merian P, Qeadan F, Zang C (2012) dplR: Dendrochronology Program Library in R. R package version 1.5.6. http://CRAN.R-project.org/package=dplR
  9. Cornelius C, Estrella N, Franz H, Menzel A (2013) Linking altitudinal gradients and temperature responses of plant phenology in the Bavarian Alps. Plant Biol 15:57–69. doi:10.1111/j.1438-8677.2012.00577.x PubMedCrossRefGoogle Scholar
  10. Desplanque C, Rolland C, Schweingruber FH (1999) Influence of species and abiotic factors on extreme tree ring modulation: Picea abies and Abies alba in Tarentaise and Maurienne (French Alps). Trees Struct Funct 13:218–227CrossRefGoogle Scholar
  11. R Development Core Team (2013) R: A language and environment for statistical computing. R Foundation for Statistical Computing, ViennaGoogle Scholar
  12. Dittmar C, Elling W (1999) Jahrringbreite von Fichte und Buche in Abhängigkeit von Witterung und Höhenlage. Forstwissenschaftliches Centralblatt 118:251–270CrossRefGoogle Scholar
  13. Dittmar C, Zech W, Elling W (2003) Growth variations of Common beech (Fagus sylvatica L.) under different climatic and environmental conditions in Europe—a dendroecological study. Ecol Manage 173(1–3):63–78. doi:10.1016/S0378-1127(01)00816-7 CrossRefGoogle Scholar
  14. Dittmar C, Fricke W, Elling W (2006) Impact of late frost events on radial growth of common beech (Fagus sylvatica L.) in Southern Germany. Eur J For Res 125(3):249–259. doi:10.1007/s10342-005-0098-y CrossRefGoogle Scholar
  15. Dobbertin M (2005) Tree growth as indicator of tree vitality and of tree reaction to environmental stress: a review. Eur J For Res 124(4):319–333. doi:10.1007/s10342-005-0085-3 CrossRefGoogle Scholar
  16. EEA (2012) Climate change, impacts and vulnerability in Europe 2012. An indicator-based report, CopenhagenGoogle Scholar
  17. Elkin C, Gutiérrez AG, Leuzinger S, Manusch C, Temperli C, Rasche L, Bugmann H (2013) A 2 °C warmer world is not safe for ecosystem services in the European Alps. Glob Change Biol 19(6):1827–1840. doi:10.1111/gcb.12156 CrossRefGoogle Scholar
  18. Elling W, Dittmar C, Pfaffelmoser K, Rötzer T (2009) Dendroecological assessment of the complex causes of decline and recovery of the growth of silver fir (Abies alba Mill.) in Southern Germany. Ecol Manage 257(4):1175–1187. doi:10.1016/j.foreco.2008.10.014 CrossRefGoogle Scholar
  19. Engler R, Randin CF, Thuiller W, Dullinger S, Zimmermann NE, Araújo MB, Pearman PB, Le Lay G, Piedallu C, Albert CH, Choler P, Coldea G, de Lamo X, Dirnböck T, Gégout J, Gómez-García D, Grytnes J, Heegaard E, Høistad F, Nogués-Bravo D, Normand S, PuŞcaŞ M, Sebastià M, Stanisci A, Theurillat J, Trivedi MR, Vittoz P, Guisan A (2011) 21st century climate change threatens mountain flora unequally across Europe. Glob Change Biol 17(7):2330–2341. doi:10.1111/j.1365-2486.2010.02393.x CrossRefGoogle Scholar
  20. FOREST EUROPE UaF (2011) State of Europe’s forests 2011. Status and trends in sustainable forest management in EuropeGoogle Scholar
  21. Frank D, Esper J (2005) Characterization and climate response patterns of a high-elevation, multi-species tree-ring network in the European Alps. Dendrochronologia 22(2):107–121. doi:10.1016/j.dendro.2005.02.004 CrossRefGoogle Scholar
  22. Fritts HC (1976) Tree rings and climate. Academic Press, LondonGoogle Scholar
  23. Fuhrer J, Beniston M, Fischlin A, Frei C, Goyette S, Jasper K, Pfister C (2006) Climate risks and their impact on agriculture and forests in Switzerland. Clim Change 79(1–2):79–102. doi:10.1007/s10584-006-9106-6 CrossRefGoogle Scholar
  24. Hasenauer H, Nemani RR, Schadauer K, Running SW (1999) Forest growth response to changing climate between 1961 and 1990 in Austria. Ecol Manage 122:209–219CrossRefGoogle Scholar
  25. Hofer T (2005) The international year of mountains: challenge and opportunity for mountain research. In: Huber UM, Bugmann HK, Reasoner MA (eds) Global change and mountain regions. An overview of current knowledge. Springer, Dordrecht, pp 1–8CrossRefGoogle Scholar
  26. Holmes RL (1983) Computer-assisted quality control in tree-ring dating and measurement. Tree-Ring Bulletin 43:69–78Google Scholar
  27. IPCC (2013) Climate change 2013: The physical science basis. Summary for policymakersGoogle Scholar
  28. Jolly WM, Dobbertin M, Zimmermann NE, Reichstein M (2005) Divergent vegetation growth responses to the 2003 heat wave in the Swiss Alps. Geophys Res Lett 32(18): L18409. doi:10.1029/2005GL023252
  29. Kölling C (2007) Klimahüllen für 27 Waldbaumarten. Allg Forst Z 62(23):1242–1245Google Scholar
  30. Konnert V, Siegrist J (2000) Waldentwicklung im Nationalpark Berchtesgaden von 1983 bis 1997. Forschungsbericht Nr. 43Google Scholar
  31. Körner C (2012) Alpine treelines. Functional ecology of the global high elevation tree limits. Springer, BaselGoogle Scholar
  32. Leal S, Melvin TM, Grabner M, Wimmer R, Briffa KR (2007) Tree-ring growth variability in the Austrian Alps: the influence of site, altitude, tree species and climate. SBOR 36(4):426–440. doi:10.1080/03009480701267063 CrossRefGoogle Scholar
  33. Lebourgeois F, Rathgeber CB, Ulrich E (2010) Sensitivity of French temperate coniferous forests to climate variability and extreme events (Abies alba, Picea abies and Pinus sylvestris). J Veg Sci 21(2):364–376. doi:10.1111/j.1654-1103.2009.01148.x CrossRefGoogle Scholar
  34. Lévesque M, Saurer M, Siegwolf R, Eilmann B, Brang P, Bugmann H, Rigling A (2013) Drought response of five conifer species under contrasting water availability suggests high vulnerability of Norway spruce and European larch. Glob Change Biol 19(10):3184–3199. doi:10.1111/gcb.12268 CrossRefGoogle Scholar
  35. Lindner M, Maroschek M, Netherer S, Kremer A, Barbati A, Garcia-Gonzalo J, Seidl R, Delzon S, Corona P, Kolström M, Lexer MJ, Marchetti M (2010) Climate change impacts, adaptive capacity, and vulnerability of European forest ecosystems. Ecol Manage 259(4):698–709. doi:10.1016/j.foreco.2009.09.023 CrossRefGoogle Scholar
  36. Lindroth A, Lagergren F, Grelle A, Klemedtsson L, Langvall O, Weslien P, Tuulik J (2009) Storms can cause Europe-wide reduction in forest carbon sink. Glob Change Biol 15(2):346–355. doi:10.1111/j.1365-2486.2008.01719.x CrossRefGoogle Scholar
  37. Luckman BH (2007) Dendroclimatology. In: Elias SA (ed) Encyclopedia of quaternary science. Elsevier, Amsterdam, pp 465–476CrossRefGoogle Scholar
  38. Luterbacher J, Dietrich D, Xoplaki E, Grosjean M, Wanner H (2004) European seasonal and annual temperature variability, trends, and extremes since 1500. Science 303(5663):1499–1503. doi:10.1126/science.1093877 Google Scholar
  39. Mäkinen H, Nöjd P, Kahle H, Neumann U, Tveite B, Mielikäinen K, Röhle H, Spiecker H (2002) Radial growth variation of Norway spruce (Picea abies (L.) Karst.) across latitudinal and altitudinal gradients in central and northern Europe. Ecol Manage 171:243–259CrossRefGoogle Scholar
  40. Maxime C, Hendrik D (2011) Effects of climate on diameter growth of co-occurring Fagus sylvatica and Abies alba along an altitudinal gradient. Trees Struct Funct 25(2):265–276. doi:10.1007/s00468-010-0503-0 CrossRefGoogle Scholar
  41. Mc Morran R, Price MF (2011) Why focus on the world’s mountain forests? In: FAO/MPS and SDC (ed) Mountain forests in a changing world. Realizing values, addressing challenges, Rome, pp 8–10Google Scholar
  42. Mosteller F, Tukey JW (eds) (1977) Data analysis and regression. A second course in statistics. Addison-wesley series in behavioral science. Quantitative methods. Addison-Wesley Pub. Co., Reading, MassGoogle Scholar
  43. Neuwirth B, Esper J, Schweingruber FH, Winiger M (2004) Site ecological differences to the climatic forcing of spruce pointer years from the Lötschental, Switzerland. Dendrochronologia 21(2):69–78. doi:10.1078/1125-7865-00040 CrossRefGoogle Scholar
  44. Paulsen J, Weber U, Körner C (2000) Tree growth near treeline: abrupt or gradual reduction with altitude? Arct Antarct Alp Res 32(1):14–20CrossRefGoogle Scholar
  45. Rinn F (2003) TSAP-Win. Time series analysis and presentation for dendrochronology and related applications. RINNTECH, HeidelbergGoogle Scholar
  46. Rolland C, Petitcolas V, Michalet R (1998) Changes in radial tree growth for Picea abies, Larix decidua, Pinus cembra and Pinus uncinata near the alpine timberline since 1750. Trees Struct Funct 13:40–53Google Scholar
  47. Salzer MW, Hughes MK, Bunn AG, Kipfmueller KF (2009) Recent unprecedented tree-ring growth in bristlecone pine at the highest elevations and possible causes. PNAS 106(48):20348–20353. doi:10.1073/pnas.0903029106 PubMedCentralPubMedCrossRefGoogle Scholar
  48. Savva Y, Oleksyn J, Reich PB, Tjoelker MG, Vaganov EA, Modrzynski J (2006) Interannual growth response of Norway spruce to climate along an altitudinal gradient in the Tatra Mountains, Poland. Trees Struct Funct 20(6):735–746. doi:10.1007/s00468-006-0088-9 CrossRefGoogle Scholar
  49. Schär C, Vidale PL, Lüthi D, Frei C, Häberli C, Liniger MA, Appenzeller C (2004) The role of increasing temperature variability in European summer heatwaves. Nature 427:332–336PubMedCrossRefGoogle Scholar
  50. Schumacher S, Bugmann HK (2006) The relative importance of climatic effects, wildfires and management for future forest landscape dynamics in the Swiss Alps. Glob Change Biol 12(8):1435–1450. doi:10.1111/j.1365-2486.2006.01188.x CrossRefGoogle Scholar
  51. Schuster R, Oberhuber W (2013) Drought sensitivity of three co-occurring conifers within a dry inner Alpine environment. Trees Struct Funct 27(1):61–69. doi:10.1007/s00468-012-0768-6 CrossRefGoogle Scholar
  52. Seidl R, Rammer W, Jäger D, Lexer MJ (2008) Impact of bark beetle (Ips typographus L.) disturbance on timber production and carbon sequestration in different management strategies under climate change. Ecol Manage 256(3):209–220. doi:10.1016/j.foreco.2008.04.002 CrossRefGoogle Scholar
  53. Speer JH (ed) (2010) Fundamentals of tree-ring research. University of Arizona Press, TucsonGoogle Scholar
  54. van der Maaten-Theunissen M, Kahle H, van der Maaten E (2013) Drought sensitivity of Norway spruce is higher than that of silver fir along an altitudinal gradient in southwestern Germany. Ann For Sci 70(2):185–193. doi:10.1007/s13595-012-0241-0 CrossRefGoogle Scholar
  55. Weber P, Bugmann HK, Rigling A (2007) Radial growth responses to drought of Pinus sylvestris and Quercus pubescens in an inner-Alpine dry valley. J Veg Sci 18(6):777. doi:10.1658/1100-9233(2007)18[777:RGRTDO]2.0.CO;2Google Scholar
  56. Wigley T, Briffa KR, Jones PD (1984) On the average value of correlated time series, with applications in dendroclimatology and hydrometeorology. J Clim Appl Meteorol 23:201–213CrossRefGoogle Scholar
  57. Wilson RJS, Hopfmüller M (2001) Dendrochronological investigations of Norway spruce along an elevational transect in the Bavarian Forest, Germany. Dendrochronologia 19(1):67–79Google Scholar
  58. Zang C (2012) Wachstumsreaktion von Baumarten in temperierten Wäldern auf Sommertrockenheit: Erkenntnisse aus einem Jahrringnetzwerk. Mitt Deutsch Dendrol Ges 97:29–46Google Scholar
  59. Zang C, Biondi F (2013) Dendroclimatic calibration in R: the bootRes package for response and correlation function analysis. Dendrochronologia 31(1):68–74. doi:10.1016/j.dendro.2012.08.001 CrossRefGoogle Scholar
  60. Zang C, Rothe A, Weis W, Pretzsch H (2011) Zur Baumarteneignung bei Klimawandel: Ableitung der Trockenstress-Anfälligkeit wichtiger Waldbaumarten aus Jahrringbreiten. Allg Forst- u J-Ztg 182(5/6):98–112Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Claudia Hartl-Meier
    • 1
  • Christoph Dittmar
    • 2
  • Christian Zang
    • 3
  • Andreas Rothe
    • 4
  1. 1.Department of GeographyJohannes Gutenberg UniversityMainzGermany
  2. 2.Environmental Research and Education (UFB)MistelbachGermany
  3. 3.Chair of EcoclimatologyTechnische Universität MünchenFreisingGermany
  4. 4.Faculty of ForestryUniversity of Applied Sciences Weihenstephan-TriesdorfFreisingGermany

Personalised recommendations