, Volume 28, Issue 5, pp 1267–1277 | Cite as

Common climatic signals affecting oak tree-ring growth in SE Central Europe

  • Katarina Cufar
  • Michael Grabner
  • András Morgós
  • Edurne Martínez del Castillo
  • Maks Merela
  • Martin de Luis
Original Paper


A network of 41 local tree-ring chronologies of oak (Quercus petraea and Quercus robur) in Austria, Hungary, Slovenia, Croatia and Serbia (latitudes 45.00–48.00N, longitudes 13.14–21.63E, altitudes 80–800 m a.s.l.) was constructed and used to establish common climatic signals in oak tree rings in the region. Co-variation of residual chronologies could be resumed in 11 significant principal components (PC), explaining 79 % of common variability. Three of them, PC1, PC2 and PC3, made it possible to identify similarities among the sites. PC1, significantly correlated with all 41 chronologies, indicated a common positive response to precipitation in spring and summer (March and June) and a negative response to temperature in spring and summer (April and June). PC2, significantly correlated with 12 chronologies, indicated a common positive response to precipitation especially in spring (May) and a negative one to high summer temperatures (especially in August) with a pronounced north to south gradient. PC3, significantly correlated with ten chronologies, indicated that a warm previous December and warm current September have a positive effect on tree growth, especially in the south-western part of the study area. The obtained climate–growth relationships will help to understand better the variability of oak growth, to fill palaeoclimatic gaps and to improve dendrochronological research in the region.


Oak Quercus sp. Dendrochronology Tree-ring network Climatic signal 



This article is dedicated to Prof. Dr. Burghart Schmidt for his enormous help and support with the construction of the chronologies in Hungary and to Prof. Dr. Dieter Eckstein for his immense support in the development of dendrochronological research in Slovenia and the wider region. The cooperation among the international partners was supported by the COST Action FP1106, STREeSS. The work was supported by the Slovenian Research Agency (ARRS), P4-0015 programme, J6-4087 project and the Spanish Ministry of Education and Science, project ELENA (CGL2012-31668). We are grateful to Prof. Dr. Jelena Trajković and Dr. Bogoslav Šefc for entrusting us with the Croatian chronology for comparisons and to two anonymous reviewers for their revisions and valuable comments that have helped us to improve the manuscript.


  1. Baillie MGL (1995) A slice through time––dendrochronology and precision dating. B.T. Batsford Ltd., LondonGoogle Scholar
  2. Baillie MGL, Pilcher JR (1973) A simple cross-dating program for tree-ring research. Tree Ring Bull 33:7–14Google Scholar
  3. Billamboz A (2003) Tree rings and wetland occupation in southwest Germany between 2000 and 500 BC: dendroarchaeology beyond dating in Tribute to F. H. Schweingruber. Tree-Ring Res 59(1):37–49Google Scholar
  4. Biondi F, Waikul K (2004) DENDROCLIM2002: a C++ program for statistical calibration of climate signals in tree-ring chronologies. Comput Geosci 30:303–311CrossRefGoogle Scholar
  5. Bridge M (2012) Locating the origins of wood resources: a review of dendroprovenancing. J Archaeol Sci 39(8):2828–2834. doi: 10.1016/j.jas.2012.04.028 CrossRefGoogle Scholar
  6. Büntgen U, Tegel W, Nicolussi K, McCormick M, Frank D, Trouet V, Kaplan JO, Herzig F, Heussner K-U, Wanner H, Luterbacher J, Esper J (2011) 2500 years of European climate variability and human susceptibility. Science 331(6017):578–582. doi: 10.1126/science.1197175 PubMedCrossRefGoogle Scholar
  7. Chang K (2010) Introduction to geographic information systems. McGraw Hill Inc., Co., New YorkGoogle Scholar
  8. Cook ER, Peters K (1997) Calculating unbiased tree-ring indices for the study of climatic and environmental change. Holocene 7:361–370CrossRefGoogle Scholar
  9. Čufar K (2007) Dendrochronology and past human activity––a review of advances since 2000. Tree-Ring Res 36(1):47–60Google Scholar
  10. Čufar K, Šimek M (2008) Dendrochronological investigation of wood from Varaždin old castle. Podravina 7(13):22–29Google Scholar
  11. Čufar K, de Luis M, Berdajs E, Prislan P (2008a) Main patterns of variability in beech tree-ring chronologies from different sites in Slovenia and their relation to climate. Zbornik gozdarstva in lesarstva 87:123–134Google Scholar
  12. Čufar K, de Luis M, Eckstein D, Kajfež-Bogataj L (2008b) Reconstructing dry and wet summers in SE Slovenia from oak tree rings series. Int J Biometeorol 52(7):607–615. doi: 10.1007/s00484-008-0153-8 PubMedCrossRefGoogle Scholar
  13. Čufar K, de Luis M, Zupančič M, Eckstein D (2008c) A 548-year tree-ring chronology of oak (Quercus spp.) for southeast Slovenia and its significance as a dating tool and climate archive. Tree-Ring Res 64(1):3–15CrossRefGoogle Scholar
  14. Čufar K, Prislan P, de Luis M, Gričar J (2008d) Tree-ring variation, wood formation and phenology of beech (Fagus sylvatica) from a representative site in Slovenia, SE Central Europe. Trees 22:749–758. doi: 10.1007/s00468-008-0235-6 CrossRefGoogle Scholar
  15. Čufar K, Sekelj Ivančan T, Grabner M (2008e) The dendrochronological dating of wood from the site of Torčec–Gradić in northern Croatia. Podravina 7(13):30–40Google Scholar
  16. Čufar K, Kromer B, Tolar T, Velušček A (2010) Dating of 4th millennium BC pile-dwellings on Ljubljansko barje, Slovenia. J Archaeol Sci 37(8):2031–2039. doi: 10.1016/j.jas.2010.03.008 CrossRefGoogle Scholar
  17. Čufar K, Cherubini M, Gričar J, Prislan P, Spina S, Romagnoli M (2011) Xylem and phloem formation in chestnut (Castanea sativa Mill.) during the 2008 growing season. Dendrochronologia 29(3):127–134CrossRefGoogle Scholar
  18. De Luis M, Novak K, Raventós J, Gričar J, Prislan P, Čufar K (2011) Climate factors promoting intra-annual density fluctuations in Aleppo pine (Pinus halepensis) from semiarid sites. Dendrochronologia 29:163–169CrossRefGoogle Scholar
  19. Di Filippo A, Biondi F, Čufar K, de Luis M, Grabner M, Maugerio M, Presutti E, Schirone B, Piovesan G (2007) Bioclimatology of beech (Fagus sylvatica L.) in the Eastern Alps: spatial and altitudinal climatic signals identified through a tree-ring network. J Biogeogr 34(11):1873–1892CrossRefGoogle Scholar
  20. Eckstein D, Wazny T, Bauch J, Klein P (1986) New evidence for the dendrochronological dating of Netherlandish paintings. Nature 320(6061):465–466CrossRefGoogle Scholar
  21. Fonti P, Garcia-Gonzalez I (2008) Earlywood vessel size of oak as a potential proxy for spring precipitation in mesic sites. J Biogeogr 35:2249–2257CrossRefGoogle Scholar
  22. Friedrich M, Remmele S, Kromer B, Hofmann J, Spurk M, Kauser KF, Orcel C, Kuppers M (2004) The 12,460-year Hohenheim oak and pine tree-ring chronology from Central Europe; a unique annual record for radiocarbon calibration and paleoenvironment reconstructions. Radiocarbon 46(3):1111–1122Google Scholar
  23. Friedrichs D, Trouet V, Büntgen U, Frank D, Esper J, Neuwirth B, Löffler J (2009a) Species-specific climate sensitivity of tree growth in Central-West Germany. Trees 23(4):729–739. doi: 10.1007/s00468-009-0315-2 CrossRefGoogle Scholar
  24. Friedrichs DA, Büntgen U, Frank DC, Esper J, Neuwirth B, Löffler J (2009b) Complex climate controls on 20th century oak growth in Central-West Germany. Tree Physiol 29(1):39–51. doi: 10.1093/treephys/tpn003 PubMedCrossRefGoogle Scholar
  25. García-González I, Eckstein D (2003) Climatic signal of earlywood vessels of oak on a maritime site. Tree Physiol 23:497–504CrossRefGoogle Scholar
  26. García-Suárez AM, Butler CJ, Baillie MGL (2009) Climate signal in tree-ring chronologies in a temperate climate: a multi-species approach. Dendrochronologia 27(3):183–198. doi: 10.1016/j.dendro.2009.05.003 CrossRefGoogle Scholar
  27. Geihofer D, Grabner M, Wimmer R, Fuchsberger H (2005) New master chronologies from historical and archaeological timber in Eastern Austria. In: Sarlatto M, Di Filippo A, Piovesan G, Romagnoli M (eds) Eurodendro 2005. Viterbo, Italy, 28th September–2nd October 2005, pp 50–51Google Scholar
  28. Gričar J (2010) Xylem and phloem formation in sessile oak from Slovenia in 2007. Wood Res 55(4):15–22Google Scholar
  29. Gričar J (2013) Influence of temperature on cambial activity and cell differentiation in Quercus sessiliflora and Acer pseudoplatanus of different ages. Drvna Industrija 64(2):95–105. doi: 10.5552/drind.2013.1246 CrossRefGoogle Scholar
  30. Grynaeus A (1996) Progress of dendrochronological research in Hungary. Dendrochronologia 14:223–226Google Scholar
  31. Grynaeus A (2003) Dendrochronology and environmental history. In: Laszlovszky J, Szabó P (eds) People and nature. Budapest, pp 175–193Google Scholar
  32. Guiot J (1991) The bootstrapped response function. Tree Ring Bull 51:39–41Google Scholar
  33. Haneca K, Wazny T, Van Acker J, Beeckman H (2005) Provenancing Baltic timber from art historical objects: success and limitations. J Archaeol Sci 32(2):261–271. doi: 10.1016/j.jas.2004.09.005 CrossRefGoogle Scholar
  34. Haneca K, Boeren I, Acker J, Beeckman H (2006) Dendrochronology in suboptimal conditions: tree rings from medieval oak from Flanders (Belgium) as dating tools and archives of past forest management. Veg Hist Archaeobot 15(2):137–144. doi: 10.1007/s00334-005-0022-x CrossRefGoogle Scholar
  35. Haneca K, Čufar K, Beeckman H (2009) Oaks, tree-rings and wooden cultural heritage: a review of the main characteristics and applications of oak dendrochronology in Europe. J Archaeol Sci 36(1):1–11. doi: 10.1016/j.jas.2008.07.005 CrossRefGoogle Scholar
  36. Holmes RL (1994) Dendrochronology program library user’s manual. University of Arizona, TucsonGoogle Scholar
  37. Kaiser HF (1992) On Cliff’s formula, the Kaiser-Guttman rule, and the number of factors. Percept Mot Skills 74(2):595–598. doi: 10.2466/pms.1992.74.2.595 CrossRefGoogle Scholar
  38. Kelly PM, Leuschner HH, Briffa KR, Harris IC (2002) The climatic interpretation of pan-European signature years in oak ring-width series. Holocene 12(6):689–694. doi: 10.1191/0959683602hl582rp CrossRefGoogle Scholar
  39. Kern Z, Grynaeus A, Morgós A (2009a) Reconstructed precipitation for Southern Bakony Mountains (Transdanubia, Hungary) back to AD 1746 based on ring widths of oak trees. Időjárás 113(4):299–314Google Scholar
  40. Kern Z, Grynaeus A, Morgós A, Horváth E, Schmidt B (2009b) High and low stands of Balaton Lake (East Central Europe, Hungary): reconstructed end-summer lake levels from AD 1601 based on radial growth of oak trees. Paper presented at the EURODENDRO 2009, Mallorca, Spain, 26th October to 30th October 2009, p 104Google Scholar
  41. Kolář T, Kyncl T, Rybníček M (2012) Oak chronology development in the Czech Republic and its teleconnection on a European scale. Dendrochronologia 30(3):243–248. doi: 10.1016/j.dendro.2012.02.002 CrossRefGoogle Scholar
  42. Lebourgeois F, Cousseau G, Ducos Y (2004) Climate-tree-growth relationships of Quercus petraea Mill. Stand in the Forest of Bercé (“Futaie des Clos”, Sarthe, France). Ann For Sci 61(4):361–372CrossRefGoogle Scholar
  43. Metzger MJ, Bunce RGH, Jongman RHG, Mücher CA, Watkins JW (2005) A climatic stratification of the environment of Europe. Glob Ecol Biogeogr 14:549–563CrossRefGoogle Scholar
  44. Mitchell TD, Carter TR, Jones PD, Hulme M, New M (2004) A comprehensive set of high-resolution grids of monthly climate for Europe and the globe: the observed record (1901–2000) and 16 scenarios (2001–2100). Tyndall Cent Work Pap 55:1–30Google Scholar
  45. Morgós A (2005) The dating of wood––dendrochronology and the situation of dendrochronology in Hungary. In: Gömöri J (ed) Archaeology and ethnography of forest and wood. Sopron, Hungary, pp 31–88Google Scholar
  46. Novak K, De Luís M, Raventós J, Čufar K (2013) Climatic signals in tree-ring widths and wood structure of Pinus halepensis in contrasted environmental conditions. Trees 27:927–936CrossRefGoogle Scholar
  47. Peters K, Jacoby GC, Cook ER (1981) Principal components analysis of tree-ring sites. Tree-Ring Bull 41:1–19Google Scholar
  48. Prislan P, Gričar J, de Luis M, Smith KT, Čufar K (2013) Phenological variation in xylem and phloem formation in Fagus sylvatica from two contrasting sites. Agric For Meteorol 180:142–151. doi: 10.1016/j.agrformet.2013.06.001 CrossRefGoogle Scholar
  49. Pukienė R, Ožalas E (2007) Medieval oak chronology from the Vilnius lower castle. Dendrochronologia 24(2–3):137–143. doi: 10.1016/j.dendro.2006.10.007 CrossRefGoogle Scholar
  50. Romagnoli M, Cherubini M, Prislan P, Gričar J, Spina S, Čufar K (2011) Main phases of wood formation in chestnut (Castanea sativa) in Central Italy––comparison of seasons 2008 and 2009. Drvna Industrija 62(4):269–275. doi: 10.5552/drind.2011.1124 CrossRefGoogle Scholar
  51. Rozas V (2005) Dendrochronology of pedunculate oak (Quercus robur L.) in an old-growth pollarded woodland in northern Spain: tree-ring growth responses to climate. Ann For Sci 62(3):209–218CrossRefGoogle Scholar
  52. Szanto Z, Kertesz R, Morgós A, Nagy D, Molnar M, Grabner M, Rinyu L, Futo I (2007) Combined techniques to date the first Turkish bridge over the Tisza river, Hungary. Radiocarbon 49(2):515–526Google Scholar
  53. Tegel W, Elburg R, Hakelberg D, Stäuble H, Büntgen U (2012) Early Neolithic water wells reveal the world’s oldest wood architecture. PLoS One 7(12):e51374. doi: 10.1371/journal.pone.0051374 PubMedCrossRefPubMedCentralGoogle Scholar
  54. Vilhar U, Skudnik M, Simončič P (2013) Fenološke faze dreves na ploskvah intenzivnega monitoringa gozdnih ekosistemov v Sloveniji––Phenological phases of trees on the intensive forest monitoring plots in Slovenia. Acta Silvae et Ligni 100(1):5–17Google Scholar
  55. Vitasse Y, Porté A, Kremer A, Michalet R, Delzon S (2009) Responses of canopy duration to temperature changes in four temperate tree species: relative contributions of spring and autumn leaf phenology. Oecologia 161(1):187–198. doi: 10.1007/s00442-009-1363-4 PubMedCrossRefGoogle Scholar
  56. Wazny T, Eckstein D (1991) The dendrochronological signal of oak (Quercus sp.) in Poland. Dendrochronologia 9(35):35–49Google Scholar
  57. Wimmer R, Grabner M (1998) Standardchronologien in Österreich als Basis für die dendrochronologische Datierung. Archaeologie Österreichs 9(2):79–85Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Katarina Cufar
    • 1
  • Michael Grabner
    • 2
  • András Morgós
    • 3
  • Edurne Martínez del Castillo
    • 4
  • Maks Merela
    • 1
  • Martin de Luis
    • 4
  1. 1.Department of Wood Science and Technology, Biotechnical FacultyUniversity of LjubljanaLjubljanaSlovenia
  2. 2.Institute of Wood Technology and Renewable ResourcesUniversity of Natural Resources and Life Sciences, Vienna, UFT TullnTullnAustria
  3. 3.Korea National University of Cultural HeritageBudapestHungary
  4. 4.Department of Geography and Regional PlaningUniversity of ZaragozaZaragozaSpain

Personalised recommendations