Advertisement

Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Hydraulic properties of European elms: xylem safety-efficiency tradeoff and species distribution in the Iberian Peninsula

Abstract

Key message

Ulmus minor and U. glabra show a trade-off between safety and efficiency in water transport, and U. laevis shows adaptations to waterlogged environments.

Abstract

Three native elm species grow in Europe: Ulmus minor Mill., U. glabra Huds. and U. laevis Pall., and within the Iberian Peninsula their habitats mainly differ in water availability. We evaluated firstly whether vulnerability to xylem embolism caused by water-stress has been a determinant factor affecting their distribution; secondly, if their xylem anatomy differs due to water availability dissimilarities; and thirdly, if these species present a trade-off between water transport safety and efficiency. Plants of the three species were grown in a common-garden in Madrid, Central Spain. The centrifuge method was used for constructing the vulnerability curves, and anatomical measurements were carried out with an optical microscope. We found clear differences in conductivity and cavitation vulnerability between the three species. Although all three elms were highly vulnerable to cavitation, U. minor was significantly more resistant to water stress cavitation. This species reached 50 % loss in conductivity at −1.1 MPa, compared to U. glabra that did so at −0.5 MPa, and U. laevis at −0.4 MPa. Maximum xylem specific conductivity and maximum leaf specific conductivity were two to three times higher in U. glabra when compared to U. minor. A clear trade-off between safety against losses of conductivity and water transport efficiency was observed considering both U. minor and U. glabra samples. Ulmus minor’s hydraulic configuration was better adapted to overcome drought episodes. The expected aridification of the Iberian Peninsula could compromise Ulmus populations due to their high vulnerability to drought stress.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. Alder NN, Pockman WT, Sperry JS, Nuismer S (1997) Use of centrifugal force in the study of xylem cavitation. J Exp Bot 48(3):665–674. doi:10.1093/jxb/48.3.665

  2. Aref IM, Ahmed AI, Khan PR, El-Atta HA, Iqbal M (2013) Drought-induced adaptive changes in the seedling anatomy of Acacia ehrenbergiana and Acacia tortilis subsp. raddiana. Trees. doi:10.1007/s00468-013-0848-2

  3. Carlquist S (1977) Ecological factors in wood evolution: a floristic approach. Am J Bot 64:887–896

  4. Christman MA, Sperry JS, Adler FR (2009) Testing the ‘rare pit’ hypothesis for xylem cavitation resistance in three species of Acer. New Phytol 182:664–674. doi:10.1111/j.1469-8137.2009.02776.x

  5. Collin E (2003) EUFORGEN technical guidelines for genetic conservation and use for European white elm (Ulmus laevis). International Plant Genetic Resources Institute, Rome

  6. Collin E, Bilger I, Eriksson G, Turok J (2000) The conservation of elm genetic resources in Europe. In: Dunn CP (ed) The elms: breeding, conservation, and disease management. Kluwer, Boston, pp 281–293

  7. Davis SD, Sperry JS, Hacke UG (1999) The relationship between xylem conduit diameter and cavitation caused by freezing. Am J Bot 86:1367–1372. doi:10.2307/2656919

  8. De Luis M, Brunetti M, González-Hidalgo JC, Longares LA, Martín-Vide J (2010) Changes in seasonal precipitation in the Iberian Peninsula during 1946–2005. Global Planet Change 74:27–33. doi:10.1016/j.gloplacha.2010.06.006

  9. Domec JC, Lachenbruch B, Meinzer FC, Woodruff DR, Warren JM, McCulloh KA (2008) Maximum height in a conifer is associated with conflicting requirements for xylem design. Proc Natl Acad Sci USA 105:12069–12074. doi:10.1073/pnas.0710418105

  10. Domec JC, Schäfer K, Oren R, Kim HS, McCarthy HR (2010) Variable conductivity and embolism in roots and branches of four contrasting tree species and their impacts on whole-plant hydraulic performance under future atmospheric CO2 concentration. Tree Physiol 30:1001–1015. doi:10.1093/treephys/tpq054

  11. Fuentes-Utrilla P (2008) Estudio de la variabilidad genética del género Ulmus L. en España mediante marcadores moleculares. Dissertation, Technical University of Madrid, Madrid

  12. Gallego-Fernández JB, García-Mora MR, García-Novo F (1999) Small wetlands lost: a biological conservation hazard in Mediterranean landscapes. Environ Conserv 26:190–199

  13. García-Nieto ME, Génova M, Morla M, Rossignoli A (2000) Los olmos en el paisaje vegetal de la Península Ibérica. In: Gil L, Solla A, Iglesias S (eds) Los olmos ibéricos. Conservación y mejora frente a la grafiosis. Organismo Autónomo Parques Nacionales, Spain, pp 129–158

  14. Giordano R, Salleo A, Salleo S, Wanderlingh F (1978) Flow in xylem vessels and Poiseuille’s law. Can J Bot 56:333–338. doi:10.1139/b78-039

  15. Hacke UG, Jansen S (2009) Embolism resistance of three boreal conifer species varies with pit structure. New Phytol 182:675–686. doi:10.1111/j.1469-8137.2009.02783.x

  16. Hacke UG, Sauter JJ (1995) Vulnerability of xylem to embolism in relation to leaf water potential and stomatal conductance in Fagus sylvatica f. purpurea and Populus balsamifera. J Exp Bot 46:1177–1183. doi:10.1093/jxb/46.9.1177

  17. Hacke UG, Sperry JS, Pittermann J (2000) Drought experience and cavitation resistance in six shrubs from the Great Basin, Utah. Basic Appl Ecol 1:31–41. doi:10.1078/1439-1791-00006

  18. Hacke UG, Sperry JS, Pockman WT, Davis SD, McCulloh KA (2001) Trends in wood density and structure are linked to prevention of xylem implosion by negative pressure. Oecologia 126:457–461. doi:10.1007/s004420100628

  19. Hacke UB, Sperry JS, Wheeler JK, Castro L (2006) Scaling of angiosperm xylem structure with safety and efficiency. Tree Physiol 26:689–701. doi:10.1093/treephys/26.6.689

  20. Herbette S, Cochard H (2010) Calcium is a major determinant of xylem vulnerability to cavitation. Plant Physiol 153:1932–1939. doi:10.1104/pp.110.155200

  21. Hultine KR, Koepke DF, Pockman WT, Fravolini A, Sperry JS, Williams DG (2006) Influence of soil texture on hydraulic properties and water relations of a dominant warm-desert phreatophyte. Tree Physiol 26:313–323. doi:10.1093/treephys/26.3.313

  22. Jacobsen AL, Pratt RB, Davis SD, Ewers FW (2008) Comparative community physiology: nonconvergence in water relations among three semi-arid shrub communities. New Phytol 180:100–113. doi:10.1111/j.1469-8137.2008.02554.x

  23. Jacobsen AL, Pratt RB, Tobin MF, Hacke UG, Ewers FW (2012) A global analysis of xylem vessel length in woody plants. Am J Bot 99:1583–1591. doi:10.3732/ajb.1200140

  24. Jansen S, Choat B, Pletsers A (2009) Morphological variation of intervessel pit membranes and implications to xylem function in angiosperms. Am J Bot 96:409–419. doi:10.3732/ajb.0800248

  25. Jarbeau JA, Ewers FW, Davis SD (1995) The mechanism of water-stress-induced embolism in two species of chaparral shrubs. Plant Cell Environ 18:189–196. doi:10.1111/j.1365-3040.1995.tb00352.x

  26. Kolb K, Sperry JS (1999) Differences in drought adaptation between subspecies of Sagebrush (Artemisia tridentata). Ecology 80:2373–2384. doi:10.1890/0012-9658(1999)080[2373:DIDABS]2.0.CO;2

  27. Kozlowski TT (1997) Responses of woody plants to flooding and salinity. Tree Physiol Monogr 1:1–29

  28. Lens F, Sperry JS, Choat B, Christman MA, Rabaey D, Jansen S (2011) Testing hypotheses that link wood anatomy to cavitation resistance and hydraulic conductivity in the genus Acer. New Phytol 190:709–723. doi:10.1111/j.1469-8137.2010.03518.x

  29. López R, López de Heredia U, Collada C, Cano FJ, Emerson BC, Cochard H, Gil L (2013) On vulnerability to cavitation, hydraulic efficiency, growth and survival in an insular pine (Pinus canariensis). Ann Bot (London) 111:1167–1179. doi:10.1093/aob/mct084

  30. Lovisolo C, Schubert A (1998) Effects of water stress on vessel size and xylem hydraulic conductivity in Vitis vinifera L. J Exp Bot 49:693–700. doi:10.1093/jxb/49.321.693

  31. MAGRAMA (2012) Database of the Ministry of Agriculture, Food and Environment, Spain. http://sig.magrama.es/siga

  32. Maherali H, Pockman WT, Jackson RB (2004) Adaptive variation in the vulnerability of woody plants to xylem cavitation. Ecology 85:2184–2199. doi:10.1890/02-0538

  33. Mittempergher L, La Porta N (1991) Hybridization studies in the Eurasian species of elm (Ulmus spp.). Silvae Genet 40:237–243

  34. Nardini A, Salleo S, Lo Gullo MA, Pitt F (2010) Different responses to drought and freeze stress of Quercus ilex L. growing along a latitudinal gradient. Plant Ecol 148:139–147. doi:10.1023/A:1009840203569

  35. Pammenter NW, Van der Willigen C (1998) A mathematical and statistical analysis of the curves illustrating vulnerability of xylem to cavitation. Tree Physiol 18:589–593. doi:10.1093/treephys/18.8-9.589

  36. Pardos JA (2004) Respuestas de las plantas al anegamiento del suelo. Invest Agrar: Sist Recur For, Fuera de Serie:101–107

  37. Perry LG, Shafroth PB, Blumenthal DM, Morgan JA, LeCain DR (2013) Elevated CO2 does not offset greater water stress predicted under climate change for native and exotic riparian plants. New Phytol 197:532–543. doi:10.1111/nph.12030

  38. Philipson JJ, Coutts MP (1980) The tolerance of tree roots to water logging. IV. Oxygen transport in woody roots of sitka spruce and lodgepole pine. New Phytol 85:489–494. doi:10.1111/j.1469-8137.1980.tb00763.x

  39. Pittermann J, Sperry J (2003) Tracheid diameter is the key trait determining the extent of freezing-induced embolism in conifers. Tree Physiol 23:907–914. doi:10.1093/treephys/23.13.907

  40. Pratt RB, Jacobsen AL, Ewers FW, Davis SD (2007) Relationships among xylem transport, biomechanics and storage in stems and roots of nine Rhamnaceae species of the California chaparral. New Phytol 174:787–798. doi:10.1111/j.1469-8137.2007.02061.x

  41. Raven JA (1996) Into the voids: the distribution, function, development and maintenance of gas spaces in plants. Ann Bot 78:137–142. doi:10.1006/anbo.1996.0105

  42. Richens RH (1983) Elm. Cambridge University Press, Cambridge

  43. Rodríguez-Calcerrada J, Nanos N, Aranda I (2011) The relevance of seed size in modulating leaf physiology and early plant performance in two tree species. Trees 25:873–884. doi:10.1007/s00468-011-0562-x

  44. Rood SB, Braatne JH, Hughes FMR (2003) Ecophysiology of riparian cottonwoods: stream flow dependency, water relations and restoration. Tree Physiol 23:1113–1124. doi:10.1093/treephys/23.16.1113

  45. Rossignoli A, Génova M (2003) Corología y hábitat de Ulmus glabra Huds. en la península Ibérica. Ecología 17:99–121

  46. Somot S, Sevault F, Déqué M, Crépon M (2008) 21st century climate change scenario for the Mediterranean using a coupled atmosphere-ocean regional climate model. Global Planet Change 63:112–126. doi:10.1016/j.gloplacha.2007.10.003

  47. Sorz J, Hietz P (2005) Gas diffusion through wood: implications for oxygen supply. Trees 20:34–41. doi:10.1007/s00468-005-0010-x

  48. Sperry JS (2003) Evolution of water transport and xylem structure. Int J Plant Sci 164:S115–S127

  49. Sperry JS, Tyree MT (1988) Mechanism of water stress-induced xylem embolism. Plant Physiol 88:581–587. doi:10.1104/pp.88.3.581

  50. Sperry JS, Donnelly JR, Tyree MT (1988) A method for measuring hydraulic conductivity and embolism in xylem. Plant Cell Environ 11:35–40. doi:10.1111/j.1365-3040.1988.tb01774.x

  51. Sperry JS, Meinzer FC, McCulloh KA (2008) Safety and efficiency conflicts in hydraulic architecture: scaling from tissues to trees. Plant Cell Environ 31:632–645. doi:10.1111/j.1365-3040.2007.01765.x

  52. Sperry JS, Christman MA, Torres-Ruiz JM, Taneda H, Smith DD (2012) Vulnerability curves by centrifugation: is there an open vessel artefact, and are ‘r’ shaped curves necessarily invalid? Plant Cell Environ 35:601–610. doi:10.1111/j.1365-3040.2011.02439.x

  53. Swift CC, Jacobs SM, Esler KJ (2008) Drought induced xylem embolism in four riparian trees from the Western Cape Province: insights and implications for planning and evaluation of restoration. S Afr J Bot 74:508–516. doi:10.1016/j.sajb.2008.01.169

  54. Tissier J, Lambs L, Peltier JP, Marigo G (2004) Relationships between hydraulic traits and habitat preference for six Acer species occurring in the French Alps. Ann For Sci 61:81–86. doi:10.1051/forest:2003087

  55. Tobin MF, Pratt RB, Jacobsen AL, De Guzman ME (2012) Xylem vulnerability to cavitation can be accurately characterised in species with long vessels using a centrifuge method. Plant Biol 15:496–504. doi:10.1111/j.1438-8677.2012.00678.x

  56. Tsuda M, Tyree MT (1997) Whole-plant hydraulic resistance and vulnerability segmentation in Acer saccharinum. Tree Physiol 17:351–357. doi:10.1093/treephys/17.6.351

  57. Tyree MT, Sperry JS (1988) Do woody plants operate near the point of catastrophic xylem dysfunction caused by dynamic water stress? Answers from a model. Plant Physiol 88:574–580. doi:10.1104/pp.88.3.574

  58. Tyree MT, Zimmerman MH (2002) Xylem structure and the ascent of sap, 2nd edn. Springer-Verlag, New York

  59. Tyree MT, Cochard H, Cruiziat P, Sinclair B, Ameglio T (1993) Drought-induced leaf shedding in walnut: evidence for vulnerability segmentation. Plant Cell Environ 16:879–882. doi:10.1111/j.1365-3040.1993.tb00511.x

  60. Tyree MT, Kimberley JK, Rood SB, Patiño S (1994) Vulnerability to drought-induced cavitation of riparian cottonwoods in Alberta: a possible factor in the decline of the ecosystem? Tree Physiol 14:455–466. doi:10.1093/treephys/14.5.455

  61. Vander Willigen C, Sherwin HW, Pammenter NW (2000) Xylem hydraulic characteristics of subtropical trees from contrasting habitats grown under identical environmental conditions. New Phytol 145:51–59. doi:10.1046/j.1469-8137.2000.00549.x

  62. Venturas M, Fuentes-Utrilla P, Ennos R, Collada C, Gil L (2013a) Human induced changes on fine-scale genetic structure in Ulmus laevis Pallas wetland forests at its SW distribution limit. Plant Ecol 214:317–327. doi:10.1007/s11258-013-0170-5

  63. Venturas M, López R, Martín JA, Gascó A, Gil L (2013b) Resistance to Dutch elm disease in Ulmus minor is heritable and related to xylem vessel size but not vulnerability to cavitation. Plant Pathol. doi:10.1111/ppa.12115

  64. Wheeler JK, Sperry JS, Hacke UG, Hoang N (2005) Inter-vessel pitting and cavitation in woody Rosaceae and other veselled plants: a basis for a safety vs. efficiency trade-off in xylem transport. Plant Cell Environ 28:800–812. doi:10.1111/j.1365-3040.2005.01330.x

  65. Wiegrefe S, Sytsma KJ, Guries RP (1994) Phylogeny of elms (Ulmus, Ulmaceae): molecular evidence for a sectional classification. Syst Bot 19:590–612

  66. Yamamoto F, Angeles G, Kozlowski TT (1987) Effect of ethrel on stem anatomy of Ulmus americana seedlings. IAWA Bull 8:3–9

Download references

Acknowledgments

We would like to thank Unai López de Heredia, Carmen Collada and Jesús Rodríguez for their comments, and Eva Miranda and Jorge Dominguez for their technical assistance. We are grateful to Gerrie Seket for her language revision and to Salustiano Iglesias for his support. We would also like to thank two anonymous referees that have helped improve greatly this article with their comments and suggestions. M.V. participation was possible thanks to a PIF scholarship from the Technical University of Madrid. The project was funded by the Comunidad de Madrid (project S2009AMB-1668).

Author information

Correspondence to Luis Gil.

Additional information

Communicated by Y. Sano.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Venturas, M., López, R., Gascó, A. et al. Hydraulic properties of European elms: xylem safety-efficiency tradeoff and species distribution in the Iberian Peninsula. Trees 27, 1691–1701 (2013). https://doi.org/10.1007/s00468-013-0916-7

Download citation

Keywords

  • Drought tolerance
  • Elm species distribution
  • Ulmus
  • Waterlogging stress
  • Wood anatomy
  • Xylem cavitation