Trees

, Volume 27, Issue 6, pp 1633–1645 | Cite as

Seed structure, germination, and reserve mobilization in Butia capitata (Arecaceae)

  • N. C. C. Oliveira
  • P. S. N. Lopes
  • L. M. Ribeiro
  • M. O. Mercandante-Simões
  • L. A. A. Oliveira
  • F. O. Silvério
Original Paper

Abstract

Butia capitata is a palm tree endemic to the Cerrado biome of Brazil and has significant potential for ornamental and food uses. In this work, we characterized the structures of the seeds and seedlings of this species to identify anatomical aspects related to its pronounced dormancy and determine the processes involved in reserve mobilization. Intact seeds, and seeds from which the operculum had been removed, were allowed to germinate and their morphology, physiology, anatomy, and histochemistry, together with those of the seedlings, were followed for 30 days. The seed coat was found to be rich in phenolic compounds and not lignified. The endosperm contains abundant protein and lipidic reserves, and the embryo has additional starch reserves. Germination occurred only in seeds with their opercula removed and involved the elongation of the cotyledon cells and meristematic activity in the “M zone” located between the embryonic axis and the proximal extremity of the embryo. The mobilization of embryonic reserves initiates during the first phase of imbibition, while the mobilization of endosperm reserves represents a post-germination event associated with the formation of a secretory epidermis and aerenchyma and the vascularization of the haustorium. Seeds with intact opercula did not germinate, but demonstrated embryonic reserve mobilization and cell elongation, indicating that dormancy in B. capitata is related to the incapacity of the embryo to dislocate the operculum.

Keywords

Dormancy Seed anatomy Operculum Cotyledonary petiole Haustorium Palms 

References

  1. Alang ZC, Moir GF, Jones LH (1988) Composition, degradation and utilization of endosperm during germination in the oil palm (Elaeis guineensis Jacq.). Ann Bot 61:261–268Google Scholar
  2. Baskin CC, Baskin JM (1998) Seeds: ecology, biogeography and evolution of dormancy and germination. Academic Press, San DiegoGoogle Scholar
  3. Baskin CC, Baskin JM (2004) A classification system for seed dormancy. Seed Sci Res 14:1–16Google Scholar
  4. Bewley JD (1997) Seed germination and dormancy. Plant Cell 14:1055–1066Google Scholar
  5. Bewley JD, Black M (1994) Seeds: physiology of development and germination. Plenum Press, New YorkGoogle Scholar
  6. Brasil, Ministério da Agricultura, Pecuária e Abastecimento (2009) Regras para análise de sementes. Mapa/ACS, BrasíliaGoogle Scholar
  7. Broschat TK (1998) Endocarp removal enhances Butia capitata (Mart.) Becc. (pindo palm) seed germination. Hortechnology 8(4):586–587Google Scholar
  8. Broschat TK, Donselman H (1987) Effects of maturity, storage, presoaking, and seed cleaning on germination in three species of palms. J Environ Hort 4:6–9Google Scholar
  9. DeMason DA (1984) Growth parameters in the cotyledon of date seedlings. Bot Gaz 145:176–183CrossRefGoogle Scholar
  10. DeMason DA (1985) Histochemical and ultrastructural changes in the haustorium of date (Phoenix dactylifera). Protoplasma 126:177–187Google Scholar
  11. DeMason DA (1988a) Embryo structure and storage reserve histochemistry in the palm, Washingtonia filifera. Am J Bot 75:330–337CrossRefGoogle Scholar
  12. DeMason DA (1988b) Seedling development in Washingtonia filifera (Arecaceae). Bot Gaz 149:45–56CrossRefGoogle Scholar
  13. DeMason DA, Thomson WW (1981) Structure and ultrastructure of the cotyledon of date palm (Phoenix dactylifera L.). Bot Gaz 142:320–328CrossRefGoogle Scholar
  14. DeMason DA, Sexton R, Gorman M, Reid JSG (1985) Structure and biochemistry of endosperm breakdown in date palm (Phoenix dactylifera) seeds. Protoplasma 126:159–167CrossRefGoogle Scholar
  15. Finch-Savage WE, Leubner-Metzger G (2006) Seed dormancy and the control of germination. New Phytol 171:501–523PubMedCrossRefGoogle Scholar
  16. Fior CS, Rodrigues LR, Leonhardt C, Schwarz SF (2011) Superação de dormência em sementes de Butia capitata. Cienc Rural 41:1150–1153CrossRefGoogle Scholar
  17. Foster AS (1949) Practical plant anatomy. Van Nostrand, PrincetonGoogle Scholar
  18. Gong X, Bassel GW, Wang A, Greenwood JS, Bewley JD (2005) The emergence of embryos from hard seeds is related to the structure of the cell walls of the micropylar endosperm, and not to endo-b-mannanase activity. Ann Bot 96:1165–1173PubMedCrossRefGoogle Scholar
  19. Haccius B, Philip VJ (1979) Embryo development in Cocos nucifera L.: a critical contribution to a general understanding of palm embryogenesis. Plant Syst Evol 132:91–106CrossRefGoogle Scholar
  20. Hartmann HT, Kester DE, Davies FT Jr, Geneve RL (2002) Plant propagation, principles and practices. Prentice Hall, New JerseyGoogle Scholar
  21. Henderson F (2006) Morphology and anatomy of palm seedlings. Bot Rev 72:273–329CrossRefGoogle Scholar
  22. Johansen DA (1940) Plant microtechnique. McGraw-Hill Boo Company, New YorkGoogle Scholar
  23. Karnovsky MJ (1965) A formaldehyde-glutaraldehyde fixative of high osmolality for use in electron microscopy. J Cell Biol 27:137–138Google Scholar
  24. Lopes PSN, Aquino CF, Magalhães HM, Brandão Júnior DS (2011) Tratamentos físicos e químicos para superacão de dormência em sementes de Butia capitata (Martius) Beccari. Pesq Agrop Trop 41:120–125Google Scholar
  25. Lorenzi H, Noblick LR, Kahn F, Ferreira E (2010) Flora Brasileira Lorenzi: Arecaceae (Palmeiras). Plantarum, Nova OdessaGoogle Scholar
  26. Magalhães HM, Catão HCRM, Sales NLP, Lima NF, Lopes PSN (2008) Qualidade sanitária de sementes de coquinho-azedo (Butia capitata) no Norte de Minas Gerais. Ciênc Rural 38:2371–2374CrossRefGoogle Scholar
  27. Magalhães HM, Lopes PSN, Ribeiro LM, Sant’Anna-Santos BF, Oliveira DMT (2013) Structure of the zygotic embryos and seedlings of Butia capitata (Arecaceae). Trees 27:273–283CrossRefGoogle Scholar
  28. Moura EF, Ventrella MC, Motoike SY (2010a) Anatomy, histochemistry and ultrastructure of seed and somatic embryo of Acrocomia aculeata (Arecaceae). Sci Agric 67:399–407CrossRefGoogle Scholar
  29. Moura RC, Lopes PSN, Brandão Junior DS, Gomes JG, Pereira MB (2010b) Biometria de frutos e sementes de Butia capitata (Mart.) Beccari (Arecaceae), em vegetacão natural no Norte de Minas Gerais, Brasil. Biota Neotrop 10:415–419Google Scholar
  30. Neves SC, Ribeiro LM, Cunha IRG, Pimenta MAS, Mercadante-Simões MO, Lopes PSN (2013) Diaspore structure and germination ecophysiology of the babassu palm (Attalea vitrivir). Flora 208:68–78CrossRefGoogle Scholar
  31. Nonogaki H, Bassel GW, Bewley JD (2010) Germination—still a mystery. Plant Sci 179:574–581CrossRefGoogle Scholar
  32. O‘Brien TP, Mccully ME (1981) The study of plant structure principles and select methods. Termarcarphi Pty, MelbourneGoogle Scholar
  33. O’Brien TP, Feder N, McCully ME (1964) Polychromatic staining of plant cell walls by toluidine blue O. Protoplasma 59:368–373CrossRefGoogle Scholar
  34. Orozco-Segovia A, Batis AI, Rojas-Are′chiga M, Mendoza A (2003) Seed biology of palms: a review. Palms 47:79–94Google Scholar
  35. Paiva EAS, Pinho SZ, Oliveira DMT (2011) Large plant samples: how to process for GMA embedding? In: Chiarini-Garcia H, Melo RCN (eds) Light microscopy: methods and protocols. Humana Press, Totowa, pp 37–49CrossRefGoogle Scholar
  36. Panza V, La′inez V, Maldonado S (2004) Seed structure and histochemistry in the palm Euterpe edulis. Bot J Linn Soc 145:445–453CrossRefGoogle Scholar
  37. Pérez HE, Criley RA, Baskin CC (2008) Promoting Germination in Dormant Seeds of Pritchardia remota (Kuntze) Beck., an Endangered Palm Endemic to Hawaii. Nat Areas J 28:251–260CrossRefGoogle Scholar
  38. Ribeiro LM, Garcia QS, Oliveira DMT, Neves SC (2010) Critérios para o teste de tetrazólio na estimativa do potencial germinativo em macaúba. Pesq Agrop Bras 45:361–368CrossRefGoogle Scholar
  39. Ribeiro LM, Neves SC, Silva PO, Andrade IG (2011a) Germinação de embriões zigóticos e desenvolvimento in vitro de coquinho azedo. Rev Ceres 58:133–139Google Scholar
  40. Ribeiro LM, Souza PP, Rodrigues AG, Oliveira TGS, Garcia QS (2011b) Overcoming dormancy in macaw palm diaspores, a tropical species with potential for use as bio-fuel. Seed Sci Technol 39:303–317Google Scholar
  41. Ribeiro LM, Oliveira DMT, Garcia QS (2012) Structural evaluations of zygotic embryos and seedlings of the macaw palm (Acrocomia aculeata, Arecaceae). Trees 26:851–863CrossRefGoogle Scholar
  42. Roberto GG, Coan AI, Habermann G (2011) Water content and GA3 induced embryonic cell expansion explain Euterpe edulis seed germination, rather than seed reserve mobilization. Seed Sci Technol 39:559–571Google Scholar
  43. Sarmento MB, Villela FA (2010) Sementes de espécies florestais nativas do sul do Brazil. Inf. ABRATES 20:39–44Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • N. C. C. Oliveira
    • 1
  • P. S. N. Lopes
    • 1
  • L. M. Ribeiro
    • 2
  • M. O. Mercandante-Simões
    • 2
  • L. A. A. Oliveira
    • 1
  • F. O. Silvério
    • 1
  1. 1.Laboratório de Propagação de Plantas, Instituto de Ciências AgráriasUniversidade Federal de Minas GeraisMontes ClarosBrazil
  2. 2.Laboratório de Micropropagação e Laboratório de Anatomia Vegetal, Departamento de Biologia GeralUnimontesMontes ClarosBrazil

Personalised recommendations