, Volume 27, Issue 5, pp 1375–1386 | Cite as

Revisiting the fate of buds: size and position drive bud mortality and bursting in two coexisting Mediterranean Quercus species with contrasting leaf habit

  • Arben Q. Alla
  • J. Julio Camarero
  • Sara Palacio
  • Gabriel Montserrat-Martí
Original Paper


Understanding the relationships between bud size and position and bud fate through time is crucial for identifying and subsequently modeling the mechanisms underlying tree architecture. However, there is a lack of information on how bud size drives crown architectural patterns in coexisting tree species. We studied bud demography in two coexisting Mediterranean oak species with contrasting leaf habit (Quercus ilex, evergreen; Q. faginea, deciduous). The main objective was to analyse the effect of bud size on the fate of buds with different positions along the shoot (apical, leaf axillary and scale-cataphyll axillary buds). The number, length and position of all buds and stems were recorded in marked branches during 4 years. Study species presented different strategies in bud production and lifespan. The evergreen species showed greater mortality rate than the deciduous one, which produced larger buds. Bud size and position were highly related since apical buds where longer than axillary ones and bud length declined basipetally along the stem. Apical buds had also higher chances of bursting than axillary ones. Within positions, longer buds presented a higher probability of bursting than shorter ones, although no absolute size threshold was found below which bud bursting was impaired. In Q. ilex, four-year-old buds were still viable and able to burst, whereas in Q. faginea practically all buds burst in their first year or died soon after. Such different bud longevities may indicate contrasting strategies in primary growth between both species. Q. ilex is able to accumulate viable buds for several ages, whereas Q. faginea seems to rely on the production of large current-year buds with high bursting probability under favourable environmental conditions.


Bud demography Bud size Bud position Budburst Quercus ilex subsp. ballota Quercus faginea 

Supplementary material

468_2013_885_MOESM1_ESM.rtf (3.4 mb)
Supplementary material 1 (RTF 3500 kb)


  1. Alla AQ, Camarero JJ, Montserrat-Marti G (2013) Seasonal and inter-annual variability of bud development as related to climate in two co-existing Mediterranean Quercus species. Ann Bot 111:261–270. doi:10.1093/aob/mcs247 PubMedCrossRefGoogle Scholar
  2. Amaral Franco J (1990) Quercus. In: Castroviejo S, Laínz M, López González G, Montserrat P, Muñoz Garmendia F, Paiva J, Villa L (eds) Flora Ibérica. CSIC, Real Jardín Botánico, pp 15–36Google Scholar
  3. Barthélémy D, Caraglio Y (2007) Plant architecture: a dynamic, multilevel and comprehensive approach to plant form, structure and ontogeny. Ann Bot 99:375–407. doi:10.1093/aob/mcl260 PubMedCrossRefGoogle Scholar
  4. Buck-Sorlin GH, Bell AD (2000) Crown architecture in Quercus petraea and Q. robur: the fate of buds and shoots in relation to age, position and environmental perturbation. Forestry 73:331–349. doi:10.1093/forestry/73.4.331 CrossRefGoogle Scholar
  5. Cline MG (1997) Concepts and terminology of apical dominance. Am J Bot 84:1064PubMedCrossRefGoogle Scholar
  6. FAO (1998) World reference base for soil resources ISRIC and ISSS, RomeGoogle Scholar
  7. Fontaine F, Chaar H, Colin F, Clément C, Burrus M, Druelle JL (1999) Preformation and neoformation of growth units on 3-year-old seedlings of Quercus petraea. Can J Bot 77:1623–1631. doi:10.1139/b99-138 CrossRefGoogle Scholar
  8. Gill AM (1971) The formation, growth and fate of buds of Fraxinus americana L. in central Massachusetts. Harvard For Pap 20:1–16Google Scholar
  9. Harmer R (1991) The effect of bud position on branch growth and bud abscission in Quercus petraea (Matt.) Liebl. Ann Bot 67:463–468Google Scholar
  10. Harmer R (1992) Relationships between shoot length, bud number and branch production in Quercus petraea (Matt.). Liebl For 65:61–72. doi:10.1093/forestry/65.1.61 Google Scholar
  11. Ishihara MI, Kikuzawa K (2009) Annual and spatial variation in shoot demography associated with masting in Betula grossa: comparison between mature trees and saplings. Ann Bot 104:1195–1205. doi:10.1093/aob/mcp217 PubMedCrossRefGoogle Scholar
  12. Jones M, Harper JL (1987) The influence of neighbours on the growth of trees I: the demography of buds in Betula pendula. Proc R Soc Lond 232:1–18CrossRefGoogle Scholar
  13. Kozlowski TT, Torrie JH, Marshall PE (1973) Predictability of shoot length from bud size in Pinus resinosa Ait. Can J For Res 3:34–38. doi:10.1139/x73-005 CrossRefGoogle Scholar
  14. Lehtilä K, Tuomi J, Sulkinoja M (1994) Bud demography of the mountain birch Betula pubescens ssp. tortuosa near tree line. Ecology 75:945–955. doi:10.2307/1939418 CrossRefGoogle Scholar
  15. Little CHA (1970) Apical dominance in long shoots of white pine (Pinus strobus). Can J Bot 48:239–253. doi:10.1139/b70-036 CrossRefGoogle Scholar
  16. Ljung K, Bhalerao RP, Sandberg G (2001) Sites and homeostatic control of auxin biosynthesis in Arabidopsis during vegetative growth. Plant J 28:465–474. doi:10.1046/j.1365-313X.2001.01173.x PubMedCrossRefGoogle Scholar
  17. Macdonald AD, Mothersill DH, Caesar JC (1984) Shoot development in Betula papyrifera. III. Long-shoot organogenesis. Can J Bot 62:437–445. doi:10.1139/b84-066 CrossRefGoogle Scholar
  18. Maillette L (1982a) Structural dynamics of silver birch. I. The fates of buds. J Appl Ecol 19:203–218. doi:10.2307/2403005 CrossRefGoogle Scholar
  19. Maillette L (1982b) Structural dynamics of silver birch. II. A matrix model of the bud population. J Appl Ecol 19:219–238. doi:10.2307/2403006 CrossRefGoogle Scholar
  20. Maillette L (1987) Effects of bud demography and elongation patterns on Betula cordifolia near the tree line. Ecology 68:1251–1261. doi:10.2307/1939209 CrossRefGoogle Scholar
  21. Montserrat-Martí G, Camarero JJ, Palacio S, Pérez-Rontomé C, Milla R, Albuixech J, Maestro M (2009) Summer-drought constrains the phenology and growth of two coexisting Mediterranean oaks with contrasting leaf habit: implications for their persistence and reproduction. Trees 23:787–799. doi:10.1007/s00468-009-0320-5 CrossRefGoogle Scholar
  22. Negi GCS (2006) Leaf and bud demography and shoot growth in evergreen and deciduous trees of central Himalaya, India. Trees 20:416–429. doi:10.1007/s00468-006-0056-4 CrossRefGoogle Scholar
  23. Nitta I, Ohsawa M (1998) Bud structure and shoot architecture of canopy and understory evergreen broad-leaved trees at their northern limit in East Asia. Ann Bot 81:115–129. doi:10.1006/anbo.1997.0545 CrossRefGoogle Scholar
  24. Phillips IDJ (1975) Apical dominance. Ann Rev Plant Physiol 26:341–367. doi:10.1146/annurev.pp.26.060175.002013 CrossRefGoogle Scholar
  25. Puntieri JG, Stecconi M, Barthélémy D (2002) Preformation and neoformation in shoots of Nothofagus antarctica (G. Forster) Oerst. (Nothofagaceae) shrubs from northern Patagonia. Ann Bot 89:665–673. doi:10.1093/aob/mcf108 CrossRefGoogle Scholar
  26. Sabatier S, Barthélémy D (2001) Bud structure in relation to shoot morphology and position on the vegetative annual shoots of Juglans regia L. (Juglandaceae). Ann Bot 87:117–123. doi:10.1006/anbo.2000.1312 CrossRefGoogle Scholar
  27. Sanz-Pérez V, Castro-Díez P (2010) Summer water stress and shade alter bud size and budburst date in three Mediterranean Quercus species. Trees 24:89–97. doi:10.1007/s00468-009-0381-5 CrossRefGoogle Scholar
  28. Sheil D, Burslem DFRP, Alder D (1995) The interpretation and misinterpretation of mortality rate measures. J Ecol 83:331–333. doi:10.2307/2261571 CrossRefGoogle Scholar
  29. Shimizu-Sato S, Tanaka M, Mori H (2009) Auxin–cytokinin interactions in the control of shoot branching. Plant Mol Biol 69:429–435. doi:10.1007/s11103-008-9416-3 PubMedCrossRefGoogle Scholar
  30. Sokal RR, Rohlf FJ (1995) Biometry: the principles and practices of statistics in biological research. WH Freeman, New YorkGoogle Scholar
  31. Tanaka M, Takei K, Kojima M, Sakakibara H, Mori H (2006) Auxin controls local cytokinin biosynthesis in the nodal stem in apical dominance. Plant J 45:1028–1036. doi:10.1111/j.1365-313X.2006.02656.x PubMedCrossRefGoogle Scholar
  32. Tolvanen A, Schroderus J, Henry GHR (2002) Age- and stage-based bud demography of Salix arctica under contrasting muskox grazing pressure in the High Arctic. Evol Ecol 15:443–462. doi:10.1023/A:1016049301905 CrossRefGoogle Scholar
  33. Ward WW (1964) Bud distribution and branching in red oak. Bot Gaz 125:217–220CrossRefGoogle Scholar
  34. Wilson BF, Kelty MJ (1994) Characteristics of shoots from the bud bank in black oak. Bull Torrey Bot Club 121:62–68. doi:10.2307/2996884 CrossRefGoogle Scholar
  35. Zuur AF, Ieno EN, Elphick CS (2009) Mixed effects models and extensions in ecology with R. Springer, New YorkCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Arben Q. Alla
    • 1
  • J. Julio Camarero
    • 2
    • 3
  • Sara Palacio
    • 4
  • Gabriel Montserrat-Martí
    • 5
  1. 1.Fakulteti i Shkencave PyjoreUniversiteti Bujqësor i TiranësTiranaAlbania
  2. 2.ARAID-Instituto Pirenaico de Ecología (IPE-CSIC)ZaragozaSpain
  3. 3.Dept. d’Ecologia, Fac. BiologiaUniversity of BarcelonaBarcelonaSpain
  4. 4.Instituto Pirenaico de Ecología (IPE-CSIC)Jaca (Huesca)Spain
  5. 5.Instituto Pirenaico de Ecología (IPE-CSIC)ZaragozaSpain

Personalised recommendations