Trees

, Volume 27, Issue 5, pp 1327–1338

Individual tree genotypes do not explain ectomycorrhizal biodiversity in soil cores of a pure stand of beech (Fagus sylvatica L.)

  • Ben Bubner
  • Matthias Fladung
  • Peter Lentzsch
  • Babette Münzenberger
  • Reinhard F. Hüttl
Original Paper

Abstract

Niche differentiation is a common explanation for high ectomycorrhizal diversity. In monocultures and on small spatial scales, the number of variable factors that may provide niches decreases. Still, even in the restricted volume of a soil core, typically more than one ectomycorrhizal species is found. We tested the hypothesis that roots of different individual beech genotypes provide niches on a small spatial scale in a pure beech (Fagus sylvatica L.) stand in the North-eastern Lowlands of Germany. Fourteen ectomycorrhizal species, as determined by ITS sequencing and phylograms were patchily distributed along an 81 m long transect with ten transect points. All root segments in the three species richest soil cores and the surrounding beeches were genotyped by microsatellite PCR. In each of the three soil cores, roots of two host genotypes were present that corresponded to the two closest mature trees. We found that the different root genotypes did not carry different sets of ectomycorrhizal species even at the high species resolution provided through our study. Therefore, the hypothesis of tree genotypes contributing to ectomycorrhizal biodiversity at the analyzed beech stand has to be rejected. Exploration types and stochastic processes are discussed as alternative explanations for the species richness and distributions in the analyzed soil cores. To the best of our knowledge, this is the first report that links ectomycorrhizal biodiversity in a soil core to the individual genotype of an angiosperm host.

Keywords

Ectomycorrhiza Exploration types Fagus sylvatica Microsatellite PCR Niches Ribosomal DNA Stochastic explanations Tree genotype 

Supplementary material

468_2013_881_MOESM1_ESM.doc (1.1 mb)
Supplementary material 1 (DOC 1113 kb)
468_2013_881_MOESM2_ESM.doc (122 kb)
Supplementary material 2 (DOC 122 kb)

References

  1. Abarenkov K, Nilsson RH, Larsson KH, Alexander IJ, Eberhardt U, Erland S, Kõljalg U (2010) The UNITE database for molecular identification of fungi—recent updates and future perspectives. New Phytol 186:281–285. doi:10.1111/j.1469-8137.2009.03160.x PubMedCrossRefGoogle Scholar
  2. Agerer R (1987–2002) Colour Atlas of Ectomycorrhizae. Eichhorn-Verlag, Schwäbisch-GmündGoogle Scholar
  3. Agerer R (2001) Exploration types of ectomycorrhizae, a proposal to classify ectomycorrhizal mycelial systems according to their patterns of differentiation and putative ecological importance. Mycorrhiza 11:107–114. doi:10.1007/s005720100108 CrossRefGoogle Scholar
  4. Agerer R, Göttlein A (2003) Correlations between projection area of ectomycorrhizae and H2O extractable nutrients in organic soil layers. Mycol Progr 2:45–52. doi:10.1007/s11557-006-0043-6 CrossRefGoogle Scholar
  5. Agren GI, Fagerstrom T (1984) Limiting dissimilarity in plants—randomness prevents exclusion of species with similar competitive abilities. Oikos 43(3):369–375. doi:10.2307/3544155 CrossRefGoogle Scholar
  6. Avis PJ, McLaughlin DJ, Dentinger BC, Reich PB (2003) Long-term increase in nitrogen supply alters above- and below-ground ectomycorrhizal communities and increases the dominance of Russula sp. in a temperate oak savannah. New Phytol 160:239–253. doi:10.1046/j.1469-8137.2003.00865.x CrossRefGoogle Scholar
  7. Baier R, Ingenhaag J, Blaschke H, Göttlein A, Agerer R (2006) Vertical distribution of an ectomycorrhizal community in upper soil horizons of a young Norway spruce (Picea abies [L.] Karst.) stand of the Bavarian Limestone Alps. Mycorrhiza 16:197–206. doi:10.1007/s00572-006-0035-z PubMedCrossRefGoogle Scholar
  8. Bens O, Buczko U, Sieber S, Hüttl RF (2006) Spatial variability of O layer thickness and humus forms under different pine beech-forest transformation stages in NE Germany. J Plant Nutr Soil Sci 169:5–15. doi:10.1002/jpln.200521734 CrossRefGoogle Scholar
  9. Blom JM, Vannini A, Vettraino AM, Hale MD, Godbold DL (2009) Ectomycorrhizal community structure in a healthy and a Phytophthora-infected chestnut (Castanea sativa Mill.) stand in central Italy. Mycorrhiza 20:25–38. doi:10.1007/s00572-009-0256-z PubMedCrossRefGoogle Scholar
  10. Bohn U, Neuhäusl R (2003) Karte der natürlichen Vegetation Europas. Maßstab 1:2,5 Mio. Landwirtschaftsverlag, MünsterGoogle Scholar
  11. Böllmann J, Elmer M, Wöllecke J, Raidl S, Hüttl RF (2010) Defensive strategies of soil fungi to prevent grazing by Folsomia candida (Collembola). Pedobiologia 53(2):107–114. doi:10.1016/j.pedobi.2009.06.003 CrossRefGoogle Scholar
  12. Bruns TD (1995) Thoughts on the process that maintain local species diversity of ectomycorrhizal fungi. Plant Soil 170:63–73CrossRefGoogle Scholar
  13. Bruns T, Peay K, Boynton P, Grubisha L, Hynson N, Nguyen N, Rosenstock N (2009) Inoculum potential of Rhizopogon spore increases with time over the first four years of a 99-year spore burial experiment. New Phytol 181:463–470. doi:10.1111/j.1469-8137.2008.02652.x PubMedCrossRefGoogle Scholar
  14. Chave J (2004) Neutral theory and community ecology. Ecol Lett 7:241–253. doi:10.1111/j.1461-0248.2003.00566.x CrossRefGoogle Scholar
  15. Chesson P (2000) Mechanisms of maintenance of species diversity. Annu Rev Ecol Syst 31:343–366. doi:10.1146/annurev.ecolsys.31.1.343 CrossRefGoogle Scholar
  16. Chesson P, Warner R (1981) Environmental variability promotes coexistence in lottery competitive systems. Am Nat 117:923–943. doi:10.1086/283778 CrossRefGoogle Scholar
  17. Conn C, Dighton J (2000) Litter quality influences on decomposition, ectomycorrhizal community structure and mycorrhizal root surface acid phosphatase activity. Soil Biol Biochem 32:489–496. doi:10.1016/S0038-0717(99)00178-9 CrossRefGoogle Scholar
  18. Courty PE, Franc F, Pierrat J-C, Garbaye J (2008) Temporal changes in the ectomycorrhizal communities in two soil horizons of a temperate oak forest. Appl Environ Microbiol 74:5792–5801. doi:10.1128/AEM.01592-08 PubMedCrossRefGoogle Scholar
  19. Dickie IA (2007) Host preferences, niches and fungal diversity. New Phytol 174:230–233. doi:10.1111/j.1469-8137.2007.02055.x PubMedCrossRefGoogle Scholar
  20. Dickie IA, Xu B, Koide RT (2002) Vertical niche differentiation of ectomycorrhizal hyphae in soil as shown by T-RFLP analysis. New Phytol 156:527–535. doi:10.1046/j.1469-8137.2002.00535.x CrossRefGoogle Scholar
  21. Diedhiou AG, Dupoey J-L, Buée M, Dambrine E, Laüt L, Garbaye J (2009) Response of ectomycorrhizal communities to past Roman occupation in an oak forest. Soil Biol Biochem 41:2206–2213. doi:10.1016/j.soilbio.2009.08.005 CrossRefGoogle Scholar
  22. Dighton J, Morale Bonilla AS, Jiminez-Nunez RA, Martinez N (2000) Determinants of leaf litter patchiness in mixed species New Jersey pine barrens forest and its possible influence on soil and soil biota. Biol Fertility Soils 31:288–293. doi:10.1007/s003740050658 CrossRefGoogle Scholar
  23. Douglas RB, Parker VT, Cullings KW (2005) Belowground ectomycorrhizal community structure of mature lodgepole pine and mixed conifer stands in Yellowstone National Park. Forest Ecol Manag 208:303–317. doi:10.1016/j.foreco.2004.12.011 CrossRefGoogle Scholar
  24. Dumolin S, Demesure B, Petit RJ (1995) Inheritance of chloroplast and mitochondrial genomes in pedunculate oak investigated with an efficient PCR method. Theor Appl Genet 91:1253–1256CrossRefGoogle Scholar
  25. Gardes M, Bruns TD (1993) ITS primers with enhanced specificity for basidiomycetes—application to the identification of mycorrhizae and rusts. Mol Ecol 2:113–118. doi:10.1111/j.1365-294X.1993.tb00005.x PubMedCrossRefGoogle Scholar
  26. Gebhardt S, Wöllecke J, Münzenberger B, Hüttl RF (2009) Microscale distribution patterns of red oak (Quercus rubra L.) ectomycorrhizae. Mycol Progr 8:245–257. doi:10.1007/s11557-009-0596-2 CrossRefGoogle Scholar
  27. Gehring CA, Mueller RC, Whitham TG (2006) Environmental and genetic effects on the formation of ectomycorrhizal and arbuscular mycorrhizal associations in cottonwoods. Oecologia 149(1):158–164. doi:10.1007/s00442-006-0437-9 PubMedCrossRefGoogle Scholar
  28. Genney DR, Anderson IC, Alexander IJ (2006) Fine-scale distribution of pine ectomycorrhizas and their extramatrical mycelium. New Phytol 170:381–390. doi:10.1111/j.1469-8137.2006.01669.x PubMedCrossRefGoogle Scholar
  29. Goodman DM, Trofymow JA (1998) Distribution of ectomycorrhizas in microhabitats in mature and old-growth stands of Douglas-fir on southeastern Vancouver Island. Soil Biol Biochem 30:2127–2138. doi:10.1016/S0038-0717(98)00094-7 CrossRefGoogle Scholar
  30. Hardin G (1960) The competitive exclusion principle. Science 131:1292–1298. doi:10.1126/science.131.3409.1292 PubMedCrossRefGoogle Scholar
  31. Heller G, Adomas A, Li G, Osborne J, van Zyl L, Sederoff R, Finlay RD, Stenlid J, Asiegbu FO (2008) Transcriptional analysis of Pinus sylvestris roots challenged with the ectomycorrhizal fungus Laccaria bicolor. BMC Plant Biol 8(19). doi:10.1186/1471-2229-8-19
  32. Hoeksema JD, Kummel M (2003) Ecological persistence of the plant-mycorrhizal mutualism: a hypothesis from species coexistence theory. Am Nat 162:S40–S45. doi:10.1086/378644 PubMedCrossRefGoogle Scholar
  33. Hubbell (2001) The unified neutral theory of biodiversity and biogeography. Princeton University Press, PrincetonGoogle Scholar
  34. Hutchinson GE (1961) The paradox of the plankton. Am Nat 93:145–159. doi:10.1086/282171 CrossRefGoogle Scholar
  35. Ishida TA, Nara K, Hogetsu T (2007) Host effects on ectomycorrhizal fungal communities: insight from eight host species in mixed conifer-broadleaf forests. New Phytol 174:430–440. doi:10.1111/j.1469-8137.2007.02016.x PubMedCrossRefGoogle Scholar
  36. Jenssen M, Hofmann G, Pommer U (2007) Die natürlichen Vegetationspotentiale Brandenburgs als Grundlage klimaplastischer Zukunftswälder. In: GDAe V (ed) Beiträge zur Gehölzkunde 2007. Hansmann Verlag, Hemmingen, pp 17–29Google Scholar
  37. Kennedy P (2010) Ectomycorrhizal fungi and interspecific competition: species interactions, community structure, coexistence mechanisms, and future research directions. New Phytol 187:895–910. doi:10.1111/j.1469-8137.2010.03399.x PubMedCrossRefGoogle Scholar
  38. Kennedy PG, Hill LT (2010) A molecular and phylogenetic analysis of the structure and specificity of Alnus rubra ectomycorrhizal assemblages. Fungal Ecol 3:195–204. doi:10.1016/j.funeco.2009.08.005 CrossRefGoogle Scholar
  39. Kjøller R (2006) Disproportionate abundance between ectomycorrhizal root tips and their associated mycelia. FEMS Microbiol Ecol. doi:10.1111/j.1574-6941.2006.00166.x
  40. Koide RT, Xu B, Sharda J, Lekberg Y (2005) Evidence of species interactions within an ectomycorrhizal fungal community. New Phytol 165:305–316. doi:10.1111/j.1469-8137.2004.01313.x PubMedCrossRefGoogle Scholar
  41. Korkama T, Pakkanen A, Pennanen T (2006) Ectomycorrhizal community structure varies among Norway spruce (Picea abies) clones. New Phytol 171:815–826. doi:10.1111/j.1469-8137.2006.01786.x PubMedCrossRefGoogle Scholar
  42. Leigh EG Jr (2007) Neutral theory: a historical perspective. J Evol Biol 20(6):2075–2091. doi:10.1111/j.1420-9101.2007.01410.x PubMedCrossRefGoogle Scholar
  43. Leski T, Aucina A, Skridaila A, Pietras M, Riepsas E, Rudawska M (2010) Ectomycorrhizal community structure of different genotypes of Scots pine under forest nursery conditions. Mycorrhiza 20:473–481. doi:10.1007/s00572-010-0298-2 PubMedCrossRefGoogle Scholar
  44. Lilleskov EA, Fahey TJ, Horton TR, Lovett GM (2002a) Belowground ectomycorrhizal fungal community change over a nitrogen deposition gradient in Alaska. Ecology 83:104–115. doi:10.2307/2680124 CrossRefGoogle Scholar
  45. Lilleskov EA, Fahey TJ, Lovett GM (2002b) Ectomycorrhizal fungal taxa differing in response to nitrogen deposition also differ in pure culture organic nitrogen use and natural abundance of nitrogen isotopes. New Phytol 154:219–231. doi:10.1046/j.1469-8137.2002.00367.x CrossRefGoogle Scholar
  46. MacArthur RH, Wilson EO (1967) The theory of island biogeography. Princeton University Press, PrincetonGoogle Scholar
  47. Molina R, Massicotte H, Trappe JM (1992) Specificity phenomena in mycorrhizal symbioses: community-ecological consequences and practical implications. In: Allen MF (ed) Mycorrhizal functioning: an integrative plant-fungal process. Chapman & Hall, London, pp 357–423Google Scholar
  48. O’Donnell K (1993) Fusarium and its near relatives. In: Reynolds DR, Taylor JW (eds) The fungal holomorph: mitotic, meiotic and pleomorphic speciation in fungal systematics. CAB International, Washington, pp 225–233Google Scholar
  49. Palmer TM, Stanton ML, Young TP (2003) Competition and coexistence: exploring mechanisms that restrict and maintain diversity within mutualist guilds. Am Nat 162:S63–S79. doi:10.1086/378682 PubMedCrossRefGoogle Scholar
  50. Pastorelli R, Smulders MJM, Van’t Westende WPC, Vosman B, Giannini R, Vettori C, Vendramin GG (2003) Characterization of microsatellite markers in Fagus sylvatica L. and Fagus orientalis Lipsky. Mol Ecol Notes 3(1):76–78. doi:10.1046/j.1471-8286.2003.00355.x CrossRefGoogle Scholar
  51. Peay KG, Bruns TD, Kennedy PG, Bergemann SE, Garbelotto M (2007) A strong species-area relationship for eukaryotic soil microbes: island size matters for ectomycorrhizal fungi. Ecol Lett 10(6):470–480. doi:10.1111/j.1461-0248.2007.01035.x PubMedCrossRefGoogle Scholar
  52. Pena R, Offermann C, Simon J, Naumann PS, Gessler A, Holst J, Polle A (2010) Girdling affects ectomycorrhizal fungal (EMF) diversity and reveals functional differences in EMF community composition in a beech forest. Appl Environ Microbiol 76(6):1831–1841. doi:10.1128/Aem.01703-09 PubMedCrossRefGoogle Scholar
  53. Pickles BJ, Genney DR, Potts JM, Lennon JL, Anderson IC, Alexander IJ (2010) Spatial and temporal ecology of Scots pine ectomycorrhizas. New Phytol 186:755–768. doi:10.1111/j.1469-8137.2010.03204.x PubMedCrossRefGoogle Scholar
  54. Rosindell J, Hubbell SP, Etienne RS (2011) The unified neutral theory of biodiversity and biogeography at age ten. Trends Ecol Evol 26(7):340–348. doi:10.1016/j.tree.2011.03.024 PubMedCrossRefGoogle Scholar
  55. Rosling A, Landeweert R, Lindahl BD, Larsson K-H, Kuyper TW, Taylor AFS, Finlay RD (2003) Vertical distribution of ectomycorrhizal fungal taxa in a podzol soil profile. New Phytol 159:775–783. doi:10.1046/j.1469-8137.2003.00829.x CrossRefGoogle Scholar
  56. Rumberger MD, Münzenberger B, Bens O, Ehrig F, Lentzsch P, Hüttl RF (2004) Changes in diversity and storage function of ectomycorrhiza and soil organoprofile dynamics after introduction of beech into Scots pine. Plant Soil 264:111–126. doi:10.1023/B:PLSO.0000047793.14857.4f CrossRefGoogle Scholar
  57. Saari SK, Campbell CD, Russell J, Alexander IJ, Anderson IC (2005) Pine microsatellite markers allow roots and ectomycorrhizas to be linked to individual trees. New Phytol 165(1):295–304. doi:10.1111/j.1469-8137.2004.01213.x PubMedCrossRefGoogle Scholar
  58. Sale P (1977) Maintenance of high diversity in coral reef fish communities. Am Nat 111:337–359. doi:10.1086/283164 CrossRefGoogle Scholar
  59. Scattolin L, Monteccio L, Mosca E, Agerer R (2008) Vertical distribution of the ectomycorrhizal community in the top soil of Norway spruce stands. Eur J For Res 127:347–357. doi:10.1007/s10342-008-0209-7 CrossRefGoogle Scholar
  60. Simon UK, Weiss M (2008) Intragenomic variation of fungal ribosomal genes is higher than previously thought. Mol Biol Evol 25(11):2251–2254. doi:10.1093/molbev/msn188 PubMedCrossRefGoogle Scholar
  61. Smith SE, Read DJ (1997) Mycorrhizal symbiosis, 2nd edn. Academic Press, San DiegoGoogle Scholar
  62. Smith SE, Read DJ (2008) Mycorrhizal symbiosis, 3rd edn. Academic Press, AmsterdamGoogle Scholar
  63. Smith ME, Douhan GW, Fremier AK, Rizzo DM (2009) Are true multihost fungi the exception or the rule? Dominant ectomycorrhizal fungi on Pinus sabiniana differ from those on cooccurring Quercus species. New Phytol 182:295–299PubMedCrossRefGoogle Scholar
  64. Sthultz CM, Whitham TG, Kennedy K, Deckert R, Gehring CA (2009) Genetically based susceptibility to herbivory influences the ectomycorrhizal fungal communities of a foundation tree species. New Phytol 184(3):657–667. doi:10.1111/j.1469-8137.2009.03016.x PubMedCrossRefGoogle Scholar
  65. Tagu D, Faivre-Rampant P, Lapeyrie F, Frey-Klett P, Vion P, Villar M (2001) Variation in the ability to form ectomycorrhizas in the F1 progeny of an interspecific poplar (Populus spp.) cross. Mycorrhiza 10:237–240. doi:10.1007/PL00009997 CrossRefGoogle Scholar
  66. Tagu D, Bastien C, Faivre-Rampant P, Garbaye J, Vion P, Villar M, Martin F (2005) Genetic analysis of phenotypic variation for ectomycorrhiza formation in an interspecific F1 poplar full-sib family. Mycorrhiza 15:87–91. doi:10.1007/s00572-004-0302-9 PubMedCrossRefGoogle Scholar
  67. Tanaka K, Tsumura Y, Nakamura T (1999) Development and polymorphism of microsatellite markers for Fagus crenata and the closely related species, F. japonica. Theor Appl Genet 99(1–2):11–15. doi:10.1007/s001220051203 CrossRefGoogle Scholar
  68. Tedersoo L, Kõljalg U, Hallenberg N, Larsson K-H (2003) Fine scale distribution of ectomycorrhizal fungi and roots across substrate layers including coarse woody debris in a mixed forest. New Phytol 159:153–165. doi:10.1046/j.0028-646x.2003.00792.x CrossRefGoogle Scholar
  69. Tedersoo L, Suvi T, Jairus T, Kõljalg U (2008) Forest microsite effects on community composition of ectomycorrhizal fungi on seedlings of Picea abies and Betula pendula. Environ Microbiol 10:1189–1201. doi:10.1111/j.1462-2920.2007.01535.x PubMedCrossRefGoogle Scholar
  70. Toljander JF, Eberhardt U, Toljander YK, Paul LR, Taylor AFS (2006) Species composition of an ectomycorrhizal fungal community along a local nutrient gradient in a boreal forest. New Phytol 170:873–884. doi:10.1111/j.1469-8137.2006.01718.x PubMedCrossRefGoogle Scholar
  71. Van der Heijden EW, Kuyper TW (2001) Does origin of mycorrhizal fungus or mycorrhizal plant influence effectiveness of the mycorrhizal symbiosis? Plant Soil 230(2):161–174. doi:10.1023/A:1010377320729 CrossRefGoogle Scholar
  72. Yamada A, Kobayashi H, Murata H, Kalmis E, Kalyoncu F, Fukuda M (2010) In vitro ectomycorrhizal specificity between the Asian red pine Pinus densiflora and Tricholoma matsutake and allied species from worldwide Pinaceae and Fagaceae forests. Mycorrhiza 20(5):333–339. doi:10.1007/s00572-009-0286-6 PubMedCrossRefGoogle Scholar
  73. Zhang Z, Schwartz S, Wagner L, Miller W (2000) A greedy algorithm for aligning DNA sequences. J Comput Biol 7:203–214. doi:10.1089/10665270050081478 PubMedCrossRefGoogle Scholar
  74. Ziegenhagen B, Liepelt S, Kuhlenkamp V, Fladung M (2003) Molecular identification of individual oak and fir trees from maternal tissues of their fruits or seeds. Trees 17:345–350. doi:10.1007/s00468-002-0244-9 Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Ben Bubner
    • 1
    • 2
  • Matthias Fladung
    • 3
  • Peter Lentzsch
    • 2
  • Babette Münzenberger
    • 2
  • Reinhard F. Hüttl
    • 4
    • 5
  1. 1.Thünen Institute of Forest GeneticsWaldsieversdorfGermany
  2. 2.Institute of Landscape Biogeochemistry, Leibniz-Centre for Agricultural Landscape Research (ZALF)MünchebergGermany
  3. 3.Thünen Institute of Forest GeneticsGroßhansdorfGermany
  4. 4.Brandenburg University of Technology, Chair of Soil Protection and RecultivationCottbusGermany
  5. 5.GFZ German Research Centre of Geosciences PotsdamPotsdamGermany

Personalised recommendations