, Volume 27, Issue 4, pp 1011–1022

Change in water loss regulation after canopy clearcut of a dominant shrub in Sahelian agrosystems, Guiera senegalensis J. F. Gmel

  • Hassane Bil-Assanou Issoufou
  • Sylvain Delzon
  • Jean-Paul Laurent
  • Mahamane Saâdou
  • Ali Mahamane
  • Bernard Cappelaere
  • Jérôme Demarty
  • Monique Oï
  • Serge Rambal
  • Josiane Seghieri
Original Paper


This paper analyzes the effect of the canopy age of Guiera senegalensis J.F. Gmel on water regulation processes and adaptative strategy to drought over a period of 2 years. The species is widespread in the agricultural Sahel. Before sowing, farmers cut back the shrubs to limit competition with crops. The stumps resprout after the millet harvest. Leaf water potential and stomatal conductance were measured in two fallows and in the two adjacent cultivated fields. Leaf transpiration rate and soil-to-leaf hydraulic conductance were deduced. The decrease in both stomatal and plant hydraulic conductance caused by seasonal drought was greater in mature shrubs than in current year resprouts. The decrease in predawn and midday leaf water potentials in response to seasonal drought was isohydrodynamic, and it was greater in mature shrubs, suggesting that current year resprouts are under less stress. In resprouts, the leaf transpiration rate stopped increasing beyond a hydraulic conductance threshold of 0.05 mol. m−2 s−1 MPa−1. Vulnerability to cavitation was determined on segments of stems in the laboratory. The leaf water potential value at which stomatal closure occurred was −2.99 ± 0.68 MPa, which corresponded to a 30 % loss in xylem conductivity. Thanks to its positive safety margin of 0.6 MPa, G. senegalensis can survive above this value. The observed strategy places G. senegalensis among the non-extreme xeric plants, leading us to suppose that this species will be vulnerable to the expected increase in regional drought.


Adaptation Embolism Functional limits Guiera senegalensis Hydraulic conductance Transpiration rate 


  1. Acherar M, Rambal S (1992) Comparative water relations of four Mediterranean oak species. Vegetatio 99:177–184CrossRefGoogle Scholar
  2. Ambouta KJM (1984) Contribution à l’édaphologie de la brousse tigrée de l’ouest nigérien. PhD dissertation, Nancy I University, France, NancyGoogle Scholar
  3. Aranda I, Gil L, Pardos JA (2000) Water relations and gas exchange in Fagus sylvatica L. and Quercus petraea (Mattuschka) Liebl. in a mixed stand at their southern limit of distribution in Europe. Trees 14:344–352CrossRefGoogle Scholar
  4. Arbonnier M (2001) Arbres, arbustes et lianes des zones sèches d’Afrique de l’Ouest, vol 2. CIRAD, MNHN, ParisGoogle Scholar
  5. Balme M, Vischel T, Lebel T, Peugeot C, Galle S (2006) Assessing the water balance in the Sahel: impact of small scale rainfall variability on runoff. Part 1: rainfall variability analysis. J Hydrol 331:336–348CrossRefGoogle Scholar
  6. Beikircher B, Mayr S (2009) Intraspecific differences in drought tolerance and acclimation in hydraulics of Ligustrum vulgare and Viburnum lantana. Tree Physiol 29:765–775PubMedCrossRefGoogle Scholar
  7. Berger A, Grouzis M, Fournier C (1996) The water status of six woody species coexisting in the Sahel (Ferlo, Senegal). J Trop Ecol 12:607–627CrossRefGoogle Scholar
  8. Bonal D, Guehl J-M (2001) Contrasting patterns of leaf water potential and gas exchange responses to drought in seedlings of tropical rainforest species. Funct Ecol 15:490–496CrossRefGoogle Scholar
  9. Boulain N, Cappelaere B, Ramier D, Issoufou HBA, Halilou O, Seghieri J, Guillemin F, Oï M, Gignoux J, Timouk F (2009) Towards an understanding of coupled physical and biological processes in cultivated Sahel–2. Vegetation and carbon dynamics. J Hydrol 375:190–203CrossRefGoogle Scholar
  10. Bréda N, Huc R, Granier A, Dreyer E (2006) Temperate forest trees and stands under severe drought: a review of ecophysiological responses, adaptation processes and long-term consequences. Ann For Sci 63:625–644CrossRefGoogle Scholar
  11. Breman H, Kessler J (1995) Woody plants in agro-ecosystems of semi-arid regions, with an emphasis on the Sahelian countries. Berlin Springer-Verlag, BerlinCrossRefGoogle Scholar
  12. Cappelaere B, Descroix L, Lebel T, Boulain N, Ramier D, Laurent JP, Favreau G, Boubkraoui S, Boucher M, Bouzou Moussa I, Chaffard V, Hiernaux P, Issoufou HBA, Le Breton E, Mamadou I, Nazoumou Y, Oi M, Ottlé C, Quantin G (2009) The AMMACATCH experiment in the cultivated Sahelian area of southwest Niger-Investigating water cycle response to a fluctuating climate and changing environment. J Hydrol 375:34–51CrossRefGoogle Scholar
  13. Castell C, Terradas J (1994) Effects of water and nutriment availability on water relations, gas exchange and growth rate of mature plants and resprouts of Arbutus unedo L. Ann Bot 73:595–602CrossRefGoogle Scholar
  14. Chapotin SM, Razanameharizaka JH, Holbrook NM (2006) Water relations of baobab trees (Adansonia spp. L.) during the rainy season: does stem water buffer daily water deficits? Plant Cell Environ 29:1021–1032PubMedCrossRefGoogle Scholar
  15. Cochard H (2002) A technique for measuring xylem hydraulic conductance under high negative pressures. Plant Cell Environ 25:815–819CrossRefGoogle Scholar
  16. Cochard H, Breda N, Granier A (1996) Whole tree hydraulic conductance and water loss regulation in Quercus during drought: evident for stomatal control of embolism? Ann For Sci 53:197–206CrossRefGoogle Scholar
  17. Cochard H, Coll L, Le Roux X, Améglio T (2002) Unraveling the effects of plant hydraulics on stomatal conductance during water stress in walnut. Plant Physiol 128:282–290PubMedCrossRefGoogle Scholar
  18. Cochard H, Damour G, Bodet C, Tharwat I, Poirier M, Ameglio T (2005) Evaluation of a new centrifuge technique for rapid generation of xylem vulnerability curves. Physiol Plant 124:410–418CrossRefGoogle Scholar
  19. Cochard H, Herbette S, Barigah T, Badel E, Ennajeh M, Vilagrosa A (2010) Does sample length influence the shape of xylem embolism vulnerability curves? A test with the Cavitron spinning technique. Plant Cell Environ 33:1543–1552PubMedGoogle Scholar
  20. Cornwell WK, Bhaskar R, Sack L, Cordell S, Lunch CK (2007) Adjustment of structure and function of Metrosideros polymorpha at high versus low precipitation. Funct Ecol 21:1063–1071CrossRefGoogle Scholar
  21. Cruiziat P, Cochard H, Améglio T (2002) The hydraulic architecture of trees: main concepts and results. Ann For Sci 59:723–752CrossRefGoogle Scholar
  22. Diagne AL (2003) Transpiration globale et fonctionnement hydrique unitaire chez Acacia tortilis en conditions de déficit pluviométrique. Sècheresse 14:235–240Google Scholar
  23. Do FC, Rocheteau A, Diagne AL, Goudiaby V, Granier A, Lhomme JP (2008) Stable annual pattern of water use by Acacia tortilis in Sahelian Africa. Tree Physiol 28:95–104PubMedCrossRefGoogle Scholar
  24. Donovan LA, Linton MJ, Richards JH (2001) Predawn plant water potential does not necessarily equilibrate with soil water potential under well watered conditions. Oecologia 129:328–335Google Scholar
  25. Eamus D, Prior L (2001) Ecophysiology of trees of seasonally dry tropics: comparisons among phenologies. Adv Ecol Res 32:113–197CrossRefGoogle Scholar
  26. Franks PJ, Drake PL, Froend RH (2007) Anisohydric but isohydrodynamic: seasonally constant plant water potential gradient explained by stomatal control mechanism incorporating variable plant hydraulic conductance. Plant Cell Environ 30:19–30PubMedCrossRefGoogle Scholar
  27. Frappart F, Hiernaux P, Guichard F, Mougin E, Kergoat L, Arjounin M, Lavenu F, Koité M, Paturel JE, Lebel T (2009) Rainfall regime across the Sahel band in the Gourma region, Mali. J Hydrol 375:128–142CrossRefGoogle Scholar
  28. Granier A, Colin F (1990) Effets d’une sécheresse édaphique sur le fonctionnement hydrique d’Abies bornmulleriana en conditions naturelles. Ann Sci For 47:189–200CrossRefGoogle Scholar
  29. Grouzis M, Diouf M, Rocheteau A, Berger A (1998) Fonctionnement hydrique et réponses des ligneux sahéliens à l’aridité. In Campa Claudine, Grignon C, Gueye M, Hamon Serge (eds) L’acacia au Sénégal. Paris : ORSTOM pp 47–61 (Colloques et Séminaires). L’Acacia au Sénégal : Réunion Thématique, 1996/12/03-05, DakarGoogle Scholar
  30. Hacke UG, Sperry JS, Ewers BE, Ellsworth DS, Schafer KVR, Oren R (2000) Influence of soil porosity on water use in Pinus taeda. Oecologia 124:495–505CrossRefGoogle Scholar
  31. Hanan NP, Prince SD (1997) Stomatal conductance of west-central supersite vegetation in HAPEX-SaheI: measurements and empirical models. J Hydrol 188–189:536–562CrossRefGoogle Scholar
  32. Hély C, Bremond L, Alleaume S, Smith B, Sykes MT, Guiot J (2006) Sensitivity of African biomes to changes in the precipitation regime. Global Ecol Biogeogr 15:258–270Google Scholar
  33. Herbette S, Wortemann R, Awad H, Huc R, Cochard H, Barigah TS (2010) Insights into xylem vulnerability to cavitation in Fagus sylvatica L. phenotypic and environmental sources of variability. Tree Physiol 30:1448–1455PubMedCrossRefGoogle Scholar
  34. Jones HG (1992) Plant and microclimate: a quantitative approach to environmental plant physiology, 2nd edn. Cambridge University Press, CambridgeGoogle Scholar
  35. Kolb KJ, Sperry JS (1999) Differences in drought adaptation between subspecies of sagebrush (Artemisia tridentata). Ecology 80:2373–2384Google Scholar
  36. Lamy JB, Bouffier L, Burlett R, Plomion C, Cochard H, Delzon S (2011) Uniform selection as a primary force reducing population genetic differentiation of cavitation resistance across a species range. PLoS One 6:e23476. doi:10.1371/journal.pone.0023476 PubMedCrossRefGoogle Scholar
  37. Larwanou M, Saâdou M (2011) The role of human interventions in tree dynamics and environmental rehabilitation in the Sahel zone of Niger. J Arid Environ 75:194–200CrossRefGoogle Scholar
  38. Le Houerou HN, Bingham RL, Skerbek W (1988) Relationship between the variability of primary production and the variability of annual precipitation in world arid lands. J Arid Environ 15:1–18Google Scholar
  39. Lebel T, Ali A (2009) Recent trends in the central and western Sahel rainfall regime 4 (1990–2007). J Hydrol 375:52–64CrossRefGoogle Scholar
  40. Leblanc M, Favreau G, Massuel S, Tweed S, Loireau M, Cappelaere B (2008) Land clearance and hydrological change in the Sahel: SW Niger. Glob Planet Change 61:135–150CrossRefGoogle Scholar
  41. Limousin JM, Rambal S, Ourcival JM, Rocheteau A, Joffre R, Rodriguez-Cortina R (2009) Long-term transpiration change with rainfall decline in a Mediterranean Quercus ilex forest. Glob Change Biol 15:2163–2175CrossRefGoogle Scholar
  42. Limousin JM, Longepierre D, Huc R, Rambal S (2010) Change in hydraulic traits of Mediterranean Quercus ilex submitted to long-term throughfall exclusion. Tree Physiol 30:1026–1036PubMedCrossRefGoogle Scholar
  43. Louppe D (1991) Guiera senegalensis: espèce agroforestière? Micro-jachère dérobée de saison sèche et approvisionnement énergétique d’un village du centre-nord du bassin arachidier sénégalais. Bois et Forêts des Tropiques 228:41–47Google Scholar
  44. Lu P, Biron P, Granier A, Cochard H (1996) Water relation of adult Norway spruce (Picea abies (L) Karst) under soil drought in the Vosges Mountains: whole-tree hydraulic conductance, xylem embolism and water loss regulation. Ann For Sci 53:113–121CrossRefGoogle Scholar
  45. Maherali H, Pockman WT, Jackson RB (2004) Adaptive variation in the vulnerability of woody plants to xylem cavitation. Ecology 85:2184–2199CrossRefGoogle Scholar
  46. Martinez-Vilalta J, Cochard H, Mencuccini M, Sterck F, Herrera A, Korhonen JFJ, Llorens P, Nikinmaa E, Nolè A, Poyatos R, Pipullone F, Sass-Klaassen U, Zweifel R (2009) Hydraulic adjustment of Scots pine across Europe. New Phytol 18:353–364CrossRefGoogle Scholar
  47. McDermitt DK (1990) Sources of error in the estimation of stomatal conductance and transpiration from porometer data. HortScience 25:1538–1548Google Scholar
  48. Meinzer FC (2002) Co-ordination of vapour and liquid phase water transport properties in plants. Plant Cell Environ 25:265–274PubMedCrossRefGoogle Scholar
  49. Meinzer FC (2003) Functional convergence in plant responses to the environment. Oecologia 134:1–11PubMedCrossRefGoogle Scholar
  50. Meinzer FC, Sharifi MR, Nilsen ET, Rundcl PW (1988) Effects of manipulation of water and nitrogen regime on the water relations of the desert shrub Larrea tridentata. Oecologia 77:480–486CrossRefGoogle Scholar
  51. Meinzer FC, Goldstein G, Jackson P, Holbrook NM, Gutiérrez MV, Cavelier J (1995) Environmental and physiological regulation of transpiration in tropical forest gap species: the influence of boundary layer and hydraulic conductance properties. Oecologia 101:514–522CrossRefGoogle Scholar
  52. Monteny BA, Lhomme JP, Chehbouni A, Troufleau D, Amadou M, Sicot M, Verhoef A, Galle, Said F, Lloyd CR (1997) The role of the Sahalian biosphere on the water and the CO2 cycle during the HAPEX-Sahel experiment. J Hydrol 188–189:516–535CrossRefGoogle Scholar
  53. Otieno DO, Schmidt MWT, Kinyamario JI, Tenhunena J (2005) Responses of Acacia tortilis and Acacia xanthophloea to seasonal changes in soil water availability in the savanna region of Kenya. J Arid Environ 62:377–400CrossRefGoogle Scholar
  54. Pammenter NW, Vander Willigen C (1998) A mathematical and statistical analysis of the curves illustrating vulnerability of xylem to cavitation. Tree Physiol 18:589–593PubMedCrossRefGoogle Scholar
  55. Quero JL, Sterck FJ, Martínez-Vilalta J, Villar R (2011) Water-use strategies of six co-existing Mediterranean woody species during a summer drought. Oecologia 166:45–57PubMedCrossRefGoogle Scholar
  56. Ramier D, Boulain N, Cappelaere B, Timouk F, Rabanit M, Lloyd CR, Boubkraoui S, Métayer F, Descroix L, Wawrzyniak V (2009) Towards an understanding of coupled physical and biological processes in the cultivated Sahel-1. Energy and water. J Hydrol 375:204–216CrossRefGoogle Scholar
  57. Ritchie GA, Hinkley TM (1975) The pressure chamber as an instrument for ecological research. Adv Ecol Res 9:165–254CrossRefGoogle Scholar
  58. Roupsard O, Ferhi A, Granier A, Pallo F, Depommier D, Mallet B, Joly HI, Dreyer E (1999) Reverse phenology and dry-season water uptake by Faidherbia albida (Del.) A. Chev. in an agroforestry parkland of Sudanese West Africa. Funct Ecol 13:460–472CrossRefGoogle Scholar
  59. Saâdou M (1990) La végétation des milieux drainés nigériens à l’est du fleuve Niger. PhD dissertation, Abdou Moumouni University, Niger, NiameyGoogle Scholar
  60. Schultz HR (2003) Differences in hydraulic architecture account for near-isohydric and anisohydric behaviour of two field-grown Vitis vinifera L. cultivars during drought. Plant Cell Environ 26:1393–1405CrossRefGoogle Scholar
  61. Schulze ED, Cermak J, Matyssek R, Penka M, Zimmermann R, Vasicek F, Gries W, Kucera J (1985) Canopy transpiration and water fluxes in the xylem of the trunk of Larix and Picea trees—a comparison of xylem flow, porometer and cuvette measurements. Oecologia 66:475–483CrossRefGoogle Scholar
  62. Seghieri J (2010) Comparison of the measurements of leaf water potential between a hydraulic press and a pressure chamber in six Sahelian woody species. Agrofor Syst 80:185–190CrossRefGoogle Scholar
  63. Seghieri J, Galle S (1999) Contribution to a Sahelian two-phase mosaic system: soil water regime and vegetation life cycles. Acta Oecol 20:209–218CrossRefGoogle Scholar
  64. Seghieri J, Laloe F (2004) Characterization of the variability of the daily course of leaf water potential in the dominant shrub species within Sahelian fallows in South-West Niger. Ecol Model 173:271–281CrossRefGoogle Scholar
  65. Seghieri J, Simier M (2002) Variations in phenology of a residual invasive shrub species in Sahelian fallow savannas, south-west Niger. J Trop Ecol 18:897–912CrossRefGoogle Scholar
  66. Seghieri J, Do FC, Devineau JL, Fournier A (2012) Phenology of woody species along the climatic gradient in west tropical Africa. In: Zhang X (ed) Phenology and climate change InTech. doi:10.5772/33729
  67. Sperry JS, Pockman WT (1993) Limitation of transpiration by hydraulic conductance and xylem cavitation in Betula occidentalis. Plant Cell Environ 16:279–287CrossRefGoogle Scholar
  68. Sperry JS, Adler FR, Campbell GS, Comstock JP (1998) Limitation of plant water use by rhizosphere and xylem conductance: results from model. Plant Cell Environ 21:347–359CrossRefGoogle Scholar
  69. Sperry JS, Hacke UG, Oren R, Comstock JP (2002) Water deficits and hydraulic limits to leaf water supply. Plant Cell Environ 2:251–263CrossRefGoogle Scholar
  70. Sultan B, Baron C, Dingkuhn M, Sarr B, Janicot S (2005) La variabilité climatique en Afrique de l’Ouest aux échelles saisonnière et intra-saisonnière. II: applications à la sensibilité des rendements agricoles au Sahel. Sècheresse 16:1–10Google Scholar
  71. Tardieu F (2005) Plant tolerance to water deficit: physical limits and possibilities for progress. CR Geoscience 337:57–67CrossRefGoogle Scholar
  72. Tardieu F, Simonneau T (1998) Variability among species of stomatal control under fluctuating soil water status and evaporative demand: modeling isohydric and anisohydric behaviour. J Exp Bot 49:419–432Google Scholar
  73. Wezel A, Rajot JL, Herbrig C (2000) Influence of shrubs on soil characteristics and their function in Sahelian agro-ecosystems in semi-arid Niger. J Arid Environ 44:383–398CrossRefGoogle Scholar
  74. Wortemann R, Herbette S, Barigah TS, Fumanal B, Alia R, Ducousso A, Gomory D, Roeckel-Drevet P, Cochard H (2011) Genotypic variability and phenotypic plasticity of cavitation resistance in Fagus sylvatica L. across Europe. Tree Physiol 31:1175–1182PubMedCrossRefGoogle Scholar
  75. Zimmermann MH (1983) Xylem structure and the ascent of sap in plants. Springer, New YorkCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Hassane Bil-Assanou Issoufou
    • 1
    • 2
  • Sylvain Delzon
    • 3
  • Jean-Paul Laurent
    • 4
  • Mahamane Saâdou
    • 1
  • Ali Mahamane
    • 1
  • Bernard Cappelaere
    • 2
  • Jérôme Demarty
    • 2
  • Monique Oï
    • 2
  • Serge Rambal
    • 5
  • Josiane Seghieri
    • 2
  1. 1.Faculté des Sciences et TechniquesUniversité Abdou MoumouniNiameyNiger
  2. 2.IRD, UMR HydroSciences MontpellierUniversité Montpellier 2MontpellierFrance
  3. 3.INRA, UMR BIOGECOUniversité de BordeauxTalenceFrance
  4. 4.CNRS, LTHEGrenobleFrance
  5. 5.CNRS, CEFE-UMR DREAMUniversité de Montpellier 2MontpellierFrance

Personalised recommendations