Trees

, Volume 27, Issue 3, pp 497–510 | Cite as

Identification of new S-RNase self-incompatibility alleles and characterization of natural mutations in Iranian almond cultivars

  • Akram Hafizi
  • Behrouz Shiran
  • Bahram Maleki
  • Ali Imani
  • Bojana Banović
Original Paper

Abstract

The two main objectives of this research were to identify new S-RNase alleles in Iranian almond cultivars and to characterize naturally occurring mutations in these alleles that may cause self-compatibility. We investigated S genotypes of 22 Iranian almond cultivars using stylar RNase electrophoresis, PCR and DNA sequencing. We report six previously unidentified P. dulcisS-RNase alleles (S45, S46, S47, S48, S49 and S50). Four of 12 tested S-RNases were found to be non-functional in vitro: S49, S50, S24/Sna and S25/S47. Detected point mutations in the C3 coding region of S49- and S50-RNase, leading to the replacement of a highly conserved cysteine and histidine residues, are with the highest probability the reason of these S-RNases inactivity. Results also suggested that ten Iranian almond cultivars display unique S genotype. All presented data confirm Iranian cultivars as valuable almond sources which are of interest to almond breeding and conservation programs.

Keywords

Almond Prunus dulcis Breeding PCR Self-incompatibility S-allele 

Abbreviations

CIG

Cross incompatibility group

IP

Isoelectric point

SI

Self-incompatibility

SC

Self-compatibility

SP

Signal peptide

Supplementary material

468_2012_803_MOESM1_ESM.doc (39 kb)
Supplementary material 1 (DOC 39 kb)
468_2012_803_MOESM2_ESM.doc (34 kb)
Supplementary material 2 (DOC 34 kb)
468_2012_803_MOESM3_ESM.doc (2.4 mb)
Supplementary material 3 (DOC 2506 kb)
468_2012_803_MOESM4_ESM.doc (387 kb)
Supplementary material 4 (DOC 387 kb)
468_2012_803_MOESM5_ESM.doc (63 kb)
Supplementary material 5 (DOC 63 kb)

References

  1. Alonso JM, Socías i Company R (2005a) Identification of the S3 self-incompatibility allele in almond by specific primers. Span J Agric Res 3(3):286–303Google Scholar
  2. Alonso JM, Socías i Company R (2005b) Physiological and genetic determination of self-compatibility in an almond breeding progeny. In: Oliveira MM, Cordeiro V (eds) XIII GREMPA Meeting on almonds and pistachios. CIHEAM-IAMZ, Zaragoza, pp 101–105Google Scholar
  3. Ayfer M (1975) Varietal selection of almond for central and southern Anatolia, 2nd Colloque. GREMPA, CIHEAM, MontpellierGoogle Scholar
  4. Babadaii R (2007) The study of mechanism and amount of self-incompatibility and determination of best pollinizer for Mamaei almond, Ph.D. diss. The Islamic Azad University, TehranGoogle Scholar
  5. Banović B, Šurbanovski N, Konstantinović M, Maksimović V (2009) Basic RNases of wild almond (Prunus webbii): cloning and characterization of six new S-RNase and one “non-S RNase” genes. J Plant Physiol 166(4):395–402PubMedCrossRefGoogle Scholar
  6. Bošković R, Tobutt KR (1996) Correlation of stylar ribonuclease zymograms with incompatibility alleles in sweet cherry. Euphytica 90(2):245–250Google Scholar
  7. Bošković R, Tobutt KR, Batlle I, Duval H (1997) Correlation of ribonuclease stylar RNase electrophoresis and incompatibility genotypes in almond. Euphytica 97(2):167–176CrossRefGoogle Scholar
  8. Bošković R, Tobutt KR, Duval H, Rovira M, Romero M, Batlle I, Dicenta F (1998) Inheritance of stylar ribonucleases in two almond progenies and their correlation with self-compatibility. Acta Hortic 470:118–122Google Scholar
  9. Bošković R, Tobutt KR, Duval H, Batlle I, Dicenta F, Vargas FJ (1999) A stylar ribonuclease assay to detect self-incompatible seedling in almond progenies. Theor Appl Genet 99(5):800–810CrossRefGoogle Scholar
  10. Bošković R, Tobutt KR, Batlle I, Duval H, Martinez-Gomez P, Gradziel TM (2003) Stylar ribonucleases in almond: correlation with and prediction of incompatibility genotypes. Plant Breed 122(1):70–76CrossRefGoogle Scholar
  11. Bošković RI, Tobutt KR, Ortega E, Sutherland BG, Godini A (2007) Self-(in)compatibility of the almonds P. dulcis and P. webbii: detection and cloning of wild-type S (f) and new self-compatibility alleles encoding inactive S-RNases. Mol Genet Genomics 278(6):665–676PubMedCrossRefGoogle Scholar
  12. Certal AC, Almeida RB, Bošković R, Oliveira MM, Feijό JA (2002) Structural and molecular analysis of self-incompatibility in almond (Prunus dulcis). Sex Plant Reprod 15(1):13–20CrossRefGoogle Scholar
  13. Channuntapipat C, Sedgley M, Collins G (2001) Sequences of the cDNAs and genomic DNAs encoding the S 1, S 7, S 8, and S f alleles from almond (Prunus dulcis). Theor Appl Genet 103(6–7):1115–1122CrossRefGoogle Scholar
  14. Channuntapipat C, Wirthensohn M, Ramesh SA, Batlle I, Arús P, Sedgley M, Collins G (2003) Identification of incompatibility genotypes in almond (Prunus dulcis Mill.) using specific primers based on the introns the S-alleles. Plant Breed 122(2):164–168CrossRefGoogle Scholar
  15. Crossa-Raynaud P, Grassely C (1985) Existence de groups d’interstérilité chez l`amandier. Options Méditerr 85:43–45Google Scholar
  16. De Giorgio D, Polignano GB (2001) Evaluating the biodiversity of almond cultivars from a germplasm collection field in Southern Italy. In: Stott DE, Mohtar RH, Steinhardt GC (eds) Sustaining the global farm. Purdue University, West Lafayette, pp 305–311Google Scholar
  17. Delplancke M, Alvarez N, Espíndola A, Joly H, Benoit L, Brouck E, Arrigo N (2012) Gene flow among wild and domesticated almond species: insights from chloroplast and nuclear markers. Evol Appl 5(4):317–329CrossRefGoogle Scholar
  18. Dicenta F, Gracia JE (1993) Inheritance of self-incompatibility in almond. Heredity 70(3):313–317CrossRefGoogle Scholar
  19. Dukuzoguz M (1975) A summary of almond selections studies in western Turkey, 2nd Colloque. GREMPA, CIHEAM, MontpellierGoogle Scholar
  20. Duval A, Boutard A, Faurobert M (2001) Analysis of stylar ribonucleases (S-RNases) in an almond progeny of ‘Ferralise’ x ‘Tuono’. Options Méditerr 56:91–94Google Scholar
  21. Felipe AJ, Socías i Company R (1987) ‘Aylés’, ‘Guara’ and ‘Moncayo’ almonds. Hort Sci 22(5):961–962Google Scholar
  22. Fernández i Martí A (2010) La autocompatibilidad en el almendro (Prunus amygdalus Batsch): estructura genética del alelo S f y modificaciones de su expresión, Ph.D. diss. University Lleida, SpainGoogle Scholar
  23. Fernández i Martí A, Hanada T, Alonso JM, Yamane H, Tao R, Socías i Company R (2009a) A modifier locus affecting the expression of the S-RNase gene could be the cause of breakdown of self-incompatibility in almond. Sex Plant Reprod 22(3):179–186PubMedCrossRefGoogle Scholar
  24. Fernández i Martí A, Alonso JM, Espiau MT, Rubio-Cabetas MJ, Socías i Company R (2009b) Genetic diversity in Spanish and foreign almond germplasm assessed by molecular characterization with simple sequence repeats. J Am Soc Hortic Sci 134(5):535–542Google Scholar
  25. Gradziel TM (1997) Almond. In: Brooks RM, Olmo HP (eds) The brooks and Olmo register of fruit and nut varieties, 3rd edn. ASHS Press, Alexandria, pp 1–12Google Scholar
  26. Green PJ (1994) The ribonucleases of higher plants. Annu Rev Plant Phys 45(1):421–445CrossRefGoogle Scholar
  27. Grigorian V (1976) Descriptión de la situation de l’ amandier en Iran. Options Méditerr 60:77–79Google Scholar
  28. Halász J, Fodor A, Pedryc A, Hegedús A (2010) S-genotyping of Eastern European almond cultivars: identification and characterization of new (S36–S39) self-incompatibility ribonuclease alleles. Plant Breed 129(2):227–232CrossRefGoogle Scholar
  29. Hanada T, Kibe T, Watari A, Yamane H, Yaegaki H, Yamaguchi M, Sasabe Y, Dandekar A, Gradziel T, Tao R (2010) Self-compatible S-haplotypes in Peach and Peach-related species. Functional genomics of horticultural crops symposium, Lisbon, pp 318Google Scholar
  30. Hauck N, Ikeda K, Tao R, Iezzoni AF (2006a) The mutated S 1-haplotype in Sour Cherry has an altered S-haplotype–specific F-box protein gene. J Hered 97(5):514–520PubMedCrossRefGoogle Scholar
  31. Hauck NR, Yamane H, Tao R, Iezzoni AF (2006b) Accumulation of nonfunctional S- haplotypes results in the breakdown of gametophytic self-incompatibility in tetraploid Prunus. Genetics 172(2):1191–1198PubMedCrossRefGoogle Scholar
  32. Imani A, Talaei AR (2006) Stigmatoidy in almond. Acta Hort 726:85–88Google Scholar
  33. Kester DE, Gradziel TM (1996) Almonds (Prunus). In: Moore JN, Janick J (eds) Fruit breeding. Wiley, New York, pp 1–97Google Scholar
  34. Kester DE, Gradzeil TM, Grasselly C (1991) Almond in genetic resources of temperate fruit and crops. Acta Hort 209:701–758Google Scholar
  35. Kester DE, Gradziel TM, Micke WC (1994) Identifying pollen incompatibility groups in California almond cultivars. J Am Soc Hortic Sci 119(1):106–109Google Scholar
  36. Kodad O, Socías i Company R (2009) Review and update of self-incompatibility alleles in almond. XΙΙth Eucarpia symp on fruit breeding and genetics, pp 421–424Google Scholar
  37. Kodad O, Alonso JM, Sánchez A, Oliveira M, Socías i Company R (2008) Evaluation of genetic diversity of S-alleles in an almond germplasm collection. J Hortic Sci Biotech 83(5):603–608Google Scholar
  38. Kodad O, Socías i Company R, Sánchez A, Oliveira MM (2009) The expression of self-compatibility in almond may not only be due to the presence of the S f allele. J Am Soc Hortic Sci 134(2):221–227Google Scholar
  39. Kodad O, Sánchez A, Saibo N, Oliveira MM, Socías i Company R (2010a) Molecular characterization of five new S alleles associated with self-incompatibility in local Spanish almond cultivars. Options Méditerr 94:105–109Google Scholar
  40. Kodad O, Alonso JM, Fernández i Martí A, Oliveira MM, Socías R (2010b) Molecular and physiological identification of new S-alleles associated with self-(in) compatibility in local Spanish almond cultivars. Sci Hortic 123(3):308–311CrossRefGoogle Scholar
  41. Ledbetter CA (2009) Using central asian germplasm to improve fruit quality and enhance diversity in California adapted apricots. Acta Hort 814:77–80Google Scholar
  42. López M, Mnejja M, Rovira M, Collins G, Vargas FJ, Arus P (2004) Self-incompatibility genotypes in almond re-evaluated by PCR, stylar ribonucleases, sequencing analysis and controlled pollinations. Theor Appl Genet 109(5):954–964PubMedCrossRefGoogle Scholar
  43. López M, Vargas FJ, Batlle I (2006) Self-(in) compatibility almond genotypes: a review. Euphytica 150(1–2):1–16CrossRefGoogle Scholar
  44. Ma RC, Oliverira MM (2001) Molecular cloning of the self-incompatibility genes S1 and S3 from almond (Prunus dulcis cv. Ferragnés). Sex Plant Reprod 14(3):163–167CrossRefGoogle Scholar
  45. Marchese A, Bošković RI, Martínez-García PJ, Tobutt KR (2008) The origin of the self-compatible almond ‘Supernova’. Plant Breed 127(1):105–107CrossRefGoogle Scholar
  46. Martínez-García P, Mañas F, López P, Dicenta F, Ortega E (2011) Molecular and phenotypic characterization of the S-locus and determination of flowering time in new `Marcona’ and `Desmayo Largueta’-type almond (Prunus dulcis) selections. Euphytica 177(1):67–78CrossRefGoogle Scholar
  47. Martínez-Gómez P, Ortega E, Sánchez-Pérez R, Dicenta F, Dandekar AM, Alonso JM, Socías i Company R, López M, Batlle I, Gradziel TM (2003) Identification of self-incompatibility alleles in almond and related Prunus species using PCR. Acta Hort 622:397–401Google Scholar
  48. McClure B, Mou B, Canevacini S, Bernatzky R (1999) A small asparagine-rich protein required for S-allele-specific pollen rejection in Nicotiana. Proc Natl Acad Sci USA 96(23):13548–13553PubMedCrossRefGoogle Scholar
  49. Momenpour A, Ebadi A, Imani A (2011) Discrimination of almond self compatible genotypes by different methods in a breeding program in Iran. Afr J Agric Res 6(23):5251–5260Google Scholar
  50. Mousavi A, Fatahi R, Zamani Z, Imani A, Dicenta F, Ortega E (2011) Identification of self-incompatibility genotypes in Iranian almond cultivars. Acta Hort 912:303–311Google Scholar
  51. Murray HC, Thompson WF (1980) Rapid isolation of high molecular weight plant DNA. Nucleic Acids Res 8(19):4321–4325PubMedCrossRefGoogle Scholar
  52. Nikoumanesh K, Ebadi A, Zeinalabedini M, Gogorcena Y (2011) Morphological and molecular variability in some Iranian almond genotypes and related Prunus species and their potentials for rootstock breeding. Sci Hort 129(1):108–118CrossRefGoogle Scholar
  53. Ortega E, Sutherland BG, Dicenta F, Bošković R, Tobutt KR (2005) Determination of incompatibility genotypes in almond using first and second intron consensus primers: detection of new S alleles and correction of reported S genotypes. Plant Breed 124(2):188–196CrossRefGoogle Scholar
  54. Ortega E, Boskovic R, Sargent DJ, Tobutt KR (2006) Analysis of S-RNase alleles of almond (Prunus dulcis): characterization of new sequences, resolution of synonyms and evidence of intragenic recombination. Mol Genet Genomics 276(5):413–426PubMedCrossRefGoogle Scholar
  55. Ortega E, Mousavi DJ, Dicenta F (2009) Cloning and characterization of nine new S-RNases from Iranian almond cultivars. Acta Hort 912:593–599Google Scholar
  56. Parry S, Newbigin E, Craik D, Nakamura KT, Bacic A, Oxley D (1998) Structural analysis and molecular model of a self-incompatibility RNase from wild Tomato. Plant Physiol 116(2):463–469PubMedCrossRefGoogle Scholar
  57. Rahemi A, Fatahi R, Ebadi A, Taghavi T, Hassani D, Gradziel T, Chaparro J (2010) Genetic variation of S-alleles in wild almonds and their related Prunus species. Aust J Crop Sci 4(8):648–659Google Scholar
  58. Rahemi A, Fatahi R, Ebadi A, Taghavi T, Hassani D, Gradziel T, Folta K, Chaparro J (2012) Genetic diversity of some wild almonds and related Prunus species revealed by SSR and EST-SSR molecular markers. Plant Sys Evol 298:173–192CrossRefGoogle Scholar
  59. Sánchez-Pérez R, Dicenta F, Martínez-Gómez P (2004) Identification of S-alleles in almond using multiplex PCR. Euphytica 138(3):263–269CrossRefGoogle Scholar
  60. Shiran B, Amirbakhtiar N, Kiani S, Mohammadi Sh, Sayed-Tabatabaei BE, Moradi H (2007) Molecular characterization and genetic relationship among almond cultivars assessed by RAPD and SSR markers. Sci Hort 111(3):280–292CrossRefGoogle Scholar
  61. Socías i Company R, Alonso JM (2004) Cross-incompatibility of “Ferragness”and “Ferralise” and pollination efficiency for self-compatibility transmission in almond. Euphytica 135(3):333–338CrossRefGoogle Scholar
  62. Socías i Company R, Alonso JM, Espiau MT, Fernández i Martí A, Kodad O, Avanzato D, Bacchetta L, Botta R, Drogoudi P, Duval H, Metzidakis I, Rovira M, Silva AP, Solar A, Spera D (2011) The definition of the European almond core collection. Acta Hort 912:445–448Google Scholar
  63. Socías i Company R, Alonso JM, Kodad O and Gradziel TM (2012) Fruit breeding. In: Badenes ML, Byrne DH (eds) Handbook of plant breeding, vol 8, 4th edn. springer, Berlin, pp 697–728Google Scholar
  64. Socías i Company R, Fernández i Martí A, Kodad O, Alonso JM (2012) Self compatibility in Prunus species: Diversity of mutations. 19th Eucarpia General Congress, Budapest, Hungary, pp 196–199Google Scholar
  65. Sonneveld T, Tobutt KR, Robbins TP (2003) Allele-specific PCR detection of sweet cherry self-incompatibility (S) alleles S1 to S16 using consensus and allele-specific primers. Theor Appl Genet 107(6):1059–1070PubMedCrossRefGoogle Scholar
  66. Sonneveld T, Tobutt KR, Vaughan SP, Robbins TP (2005) Loss of pollen-S function in two self-compatible selections of Prunus avium is associated with deletion/mutation of an S haplotype-specific F-box gene. Plant Cell 17(1):37–51PubMedCrossRefGoogle Scholar
  67. Sorkheh K, Shiran B, Gradziel TM, Epperson BK, Martínez-Gómez P, Asadi E (2007) Amplified fragment length polymorphism as a tool for molecular characterization of almond germplasm: genetic diversity among cultivated genotypes and related wild species of almond, and its relationships with agronomic traits. Euphytica 156(3):327–344CrossRefGoogle Scholar
  68. Sorkheh K, Shiran B, Kiani S, Amirbakhtiar N, Mousavi S, Rouhi V, Mohammady-D S, Gradziel TM, Malysheva-Otho LV, Martinez-Gomez P (2009) Discriminating ability of molecular markers and morphological characterization in the establishment of genetic relationships in cultivated genotypes of almond and related wild species. J Forest Res 20(3):183–194CrossRefGoogle Scholar
  69. Surbanovski N, Tobutt KR, Konstantinović M, Maksimović V, Sargent DJ, Stevanović V, Bošković RI (2007) Self-incompatibility of Prunus tenella and evidence that reproductively isolated species of Prunus have different SFB alleles coupled with an identical S-RNase allele. Plant J 50(4):723–734PubMedCrossRefGoogle Scholar
  70. Sutherland BG, Robbins TP, Tobutt KR (2004) Primers amplifying a range of Prunus S-alleles. Plant Breed 123(6):582–584CrossRefGoogle Scholar
  71. Sutherland BG, Tobutt KR, Robbins TP (2008) Trans-specific S-RNase and SFB alleles in Prunus self-incompatibility haplotypes. Mol Genet Genomics 279(1):95–106PubMedCrossRefGoogle Scholar
  72. Talaei A, Imani A (1995) Selection of the best pollinizer for late flowering almond varieties. Hort Sci 30(4):70–77Google Scholar
  73. Tamura M, Ushijima K, Sassa H, Hirano H, Tao R, Gradziel TM, Dandekar AM (2000) Identification of self-incompatibility genotypes of almond by allele-specific PCR analysis. Theor Appl Genet 101(3):344–349CrossRefGoogle Scholar
  74. Tao R, Watari A, Hanada T, Habu T, Yaegaki H, Yamaguchi M, Yamane H (2007) Self compatible peach (Prunus persica) has mutant versions of the S haplotypes found in self-incompatible Prunus species. Plant Mol Biol 63(1):109–123PubMedCrossRefGoogle Scholar
  75. Tao R, Fernández À, Akagi T, Hanada T, Alonso J, Socías i Company R (2011) Characterization of self-compatible SF-haplotype in almond. Plant and Animal Genomes XIX Conference, San DiegoGoogle Scholar
  76. Thompson MM (1983) A survey of fruit genetic resources in Syria and recommendations for collection. FAO/IBPGR Consultant for Fruit Genetic Resources ReportGoogle Scholar
  77. Tsai DS, Lee HS, Post LC, Kreiling KM, Kao TH (1992) Sequence of an S-protein of Lycopersicon peruvianum and comparison with other solanaceous S-proteins. Sex Plant Reprod 5(4):256–263CrossRefGoogle Scholar
  78. Tsukamoto T, Hauck NR, Tao R, Jiang N, Iezzoni AF (2006) Molecular characterization of three non-functional S-haplotypes in Sour Cherry (Prunus cerasus). Plant Mol Biol 62(3):371–383PubMedCrossRefGoogle Scholar
  79. Ushijima K, Sassa H, Tao R, Yamane H, Dandekar AM, Gradziel TM, Hirano H (1998) Cloning and characterization of cDNAs encoding S-RNases from almond (Prunus dulcis): primary structural features sequence diversity and sequence diversity of the S-RNases in Rosaceae. Mol Gen Genet 260(2–3):261–268PubMedCrossRefGoogle Scholar
  80. Ushijima K, Sassa H, Dandekar AM, Gradziel TM, Tao R, Hiranob H (2003) Structural and transcriptional analysis of the self-incompatibility locus of almond: identification of a pollen-expressed F-Box gene with haplotype-specific polymorphism. Plant Cell 15(3):771–781PubMedCrossRefGoogle Scholar
  81. Valizadeh B, Ershadi A, Gholami M (2009) Identification of self-incompatibility alleles in Iranian almond cultivars by PCR using consensus and allele-specific primers. J Hort Sci Biotech 84(3):285–290Google Scholar
  82. Vargas F, Romero M, Clavé J, Vergés J, Santos J, Battle I (2008) ‘Vayro’, ‘Marinada’, ‘Constanti’, and ‘Tarraco’ almonds. Hort Sci 43(2):535–537Google Scholar
  83. Vilanova S, Badenes ML, Burgos L, Martínez-Calvo J, Llácer G, Romero C (2006) Self compatibility of two apricot selections is associated with two pollen-part mutations of different nature. Plant Physiol 142(2):629–641PubMedCrossRefGoogle Scholar
  84. Yamane H, Ikeda K, Hauck NR, Iezzoni AF, Tao R (2003) Self-incompatibility (S) locus region of the mutated S6-haplotype of Sour Cherry (Prunus cerasus) contains a functional pollen S allele and a non-functional pistil S allele. J Exp Bot 54(392):2431–2434PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Akram Hafizi
    • 1
    • 2
  • Behrouz Shiran
    • 2
    • 5
  • Bahram Maleki
    • 1
  • Ali Imani
    • 3
  • Bojana Banović
    • 4
  1. 1.Faculty of Agriculture, Department of Agronomy and Plant BreedingZanjan UniversityZanjanIran
  2. 2.Faculty of Agriculture, Department of Plant Breeding and BiotechnologyShahrekord UniversityShahrekordIran
  3. 3.Sections of HorticultureAgriculture and Natural Resources Research Centre of KarajKarajIran
  4. 4.Institute of Molecular Genetics and Genetic EngineeringUniversity of BelgradeBelgradeSerbia
  5. 5.Institute of BiotechnologyShahrekord UniversityShahrekordIran

Personalised recommendations