Trees

, Volume 27, Issue 1, pp 273–283 | Cite as

Structure of the zygotic embryos and seedlings of Butia capitata (Arecaceae)

  • H. M. Magalhães
  • P. S. N. Lopes
  • L. M. Ribeiro
  • B. F. Sant’Anna-Santos
  • D. M. T. Oliveira
Original Paper

Abstract

Butia capitata, an endemic palm of the Brazilian savanna threatened by deforestation, demonstrates low germinability due to seed dormancy. The present study characterizes the structure of the zygotic embryo and describes germination and seedling development. Pyrenes were sown into sandy soil substrates to germinate, and their embryos were also cultivated in vitro in MS medium; structural evaluations were made during their development. Seedling growth through the endocarp germ pore culminates in the protrusion of the cotyledonary petiole, with the root and leaf sheaths subsequently being emitted laterally from its extremity. The embryos are composed of the cotyledon (whose proximal third has a haustorial function) and a diminutive embryo axis that is contained within the cotyledonary petiole. The protoderm, ground meristem, and procambium can be observed in their typical positions in the embryo axis and cotyledon. The development of the vegetative axis could be observed on the second day of in vitro cultivation, with elongation of the embryo axis and the beginning of the differentiation of the first eophyll. Elongation of the cotyledonary petiole and the differentiation of the parenchyma and tracheary elements were observed during the second to fifth day. Although the hypocotyl–radicle axis is less differentiated than the plumule, root protrusion occurs on the eighth day, and the leaf sheaths are only emitted between the twelfth and the sixteenth days; the haustorium atrophied during this stage. The embryonic structure of B. capitata does not impose limitations on seed germination as dormancy is of the non-profound physiological type, and the 50 % elongation of the cotyledonary petiole serves as a morphological indicator of germination.

Keywords

Embryo culture Morphological dormancy Germination Palms 

Notes

Acknowledgments

The authors would like to thank the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES/PROCAD 213/207), the Conselho de Desenvolvimento Científico e Tecnológico (CNPq 27/2008) for their financial support and for the study grant awarded to the first author. We also thank professor Santos D’Angelo Neto for the illustration of seed germination. Denise M. T. Oliveira thanks CNPq for the research productivity grant (process number 304716/2008-1), Leonardo M. Ribeiro thanks the Fundação de Amparo à Pesquisa de Minas Gerais for the research productivity grant (FAPEMIG process number CRA-BIP-00137-11), and Paulo S. N. Lopes thanks CNPq for the technological development and innovative extension grant (process number 313116/2009-1).

References

  1. Aguiar MO, Mendonça MS (2002) Aspectos morfo-anatômicos do embrião de Euterpe precatoria Mart. durante o processo germinativo. Acta Bot Bras 16:241–249CrossRefGoogle Scholar
  2. Aguiar MO, Mendonça MS (2003) Morfo-anatomia da semente de Euterpe precatoria Mart. (Palmae). Rev Bras de Sem 25:37–42CrossRefGoogle Scholar
  3. Baskin CC, Baskin JM (1998) Seeds: ecology, biogeography and evolution of dormancy and germination. Academic Press, San DiegoGoogle Scholar
  4. Baskin CC, Baskin JM (2004) A classification system for seed dormancy. Seed Sci Res 14:1–16Google Scholar
  5. Bewley JD, Black M (1994) Seeds: physiology of development and germination. Plenum Press, New YorkGoogle Scholar
  6. Bhojwani SS, Razdan MK (1996) Plant tissue culture: theory and practice, a revised edition. Elsevier, AmsterdamGoogle Scholar
  7. Broschat TK (1998) Endocarp removal enhances Butia capitata (Mart.) Becc. (pindo palm) seed germination. Hortechnology 8(4):586–587Google Scholar
  8. Corner EJH (1966) The natural history of palms. University of California Press, BerkeleyGoogle Scholar
  9. DeMason DA (1985) Histochemical and ultrastructural changes in the haustorium of date (Phoenix dactylifera). Protoplasma 126:177–187Google Scholar
  10. DeMason D (1988) Embryo structure and storage reserve histochemistry in the palm, Washingtonia filifera. Am J Bot 75:330–337CrossRefGoogle Scholar
  11. DeMason D, Thomson WW (1981) Structure and ultrastructure of the cotyledon of date palm (Phoenix dactylifera L.). Bot Gaz 142:320–328CrossRefGoogle Scholar
  12. DeMason DA, Sexton R, Gorman M, Reid JSG (1985) Structure and biochemistry of endosperm breakdown in date palm (Phoenix dactylifera) seeds. Protoplasma 126:159–167CrossRefGoogle Scholar
  13. Fior CS, Rodrigues LR, Leonhardt C, Schwarz SF (2011) Superação de dormência em sementes de Butia capitata. Cienc Rural 41:1150–1153CrossRefGoogle Scholar
  14. Gatin CL (1906) Recherches anatomiques et chimiques sur la germinacion des palmiers. Ann Sci Nat Bot 3(9):191–314Google Scholar
  15. Haccius B, Philip VJ (1979) Embryo development in Cocos nucifera L.: a critical contribution to a general understanding of palm embryogenesis. Pl Syst Evol 132:91–106CrossRefGoogle Scholar
  16. Henderson FM (2006) Morphology and anatomy of palm seedlings. Bot Rev 72:273–329CrossRefGoogle Scholar
  17. Jensen WA (1962) Botanical histochemistry: principles and practice. W. R. Freeman, San FranciscoGoogle Scholar
  18. Johansen DA (1940) Plant microtechnique. McGraw-Hill, New YorkGoogle Scholar
  19. Lopes PSN, Aquino CF, Magalhães HM, Brandão Júnior DS (2011) Tratamentos físicos e químicos para superação de dormência em sementes de Butia capitata (Martius) Beccari. Pesq Agrop Trop 41:120–125Google Scholar
  20. Lorenzi H, Noblick LR, Kahn F, Ferreira E (2010) Flora Brasileira Lorenzi: Arecaceae (Palmeiras). Plantarum, Nova OdessaGoogle Scholar
  21. Martius P (1823–1850) Historia naturalis. Palmarum, MunichGoogle Scholar
  22. Mendonça MS, Oliveira AB, Araújo MGP, Araújo LM (2008) Morfo-anatomia do fruto e semente de Oenocarpus minor Mart. (Arecaceae). Rev Bras Sem 30:90–95CrossRefGoogle Scholar
  23. Mercadante-Simões MO, Fonseca RS, Ribeiro LM, Nunes YRF (2006) Biologia reprodutiva de Butia capitata (Mart.) Beccari (Arecaceae) em uma área de cerrado no norte de Minas Gerais. Unimontes Cient 8:143–149Google Scholar
  24. Moura RC, Lopes PSN, Brandão Junior DS, Gomes JG, Pereira MB (2010) Biometria de frutos e sementes de Butia capitata (Mart.) Beccari (Arecaceae), em vegetação natural no Norte de Minas Gerais, Brasil. Biota Neotrop 10:415–419CrossRefGoogle Scholar
  25. Murashige T, Skoog F (1962) A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiol Plant 15:473–497CrossRefGoogle Scholar
  26. Neves SC (2012) Estrutura do fruto e germinação de babaçu [Attalea vitrivir Zona (Arecaceae)]. Ms. Thesis, Universidade Estadual de Montes Claros, BrasilGoogle Scholar
  27. O’Brien TP, Feder N, McCully ME (1964) Polychromatic staining of plant cell walls by toluidine blue O. Protoplasma 59:368–373CrossRefGoogle Scholar
  28. Oliveira NCC (2012). Estrutura da semente e das plântulas e mobilização de reservas em coquinho azedo [Butia capitata (Mart.) Becc. (Arecaceae)]. Ms. Thesis, Universidade Federal de Minas Gerais, BrasilGoogle Scholar
  29. Oliveira AB, Mendonça MS, Araújo MGP (2010) Aspectos anatômicos do embrião e desenvolvimento inicial de Oenocarpus minor Mart: uma palmeira da Amazônia. Acta bot bras 24:20–24CrossRefGoogle Scholar
  30. Orozco-Segovia A, Batis AI, Rojas-Aréchiga M, Mendoza A (2003) Seed biology of palms: a review. Palms 47:79–94Google Scholar
  31. Paiva EAS, Pinho SZ, Oliveira DMT (2011) Large plant samples: how to process for GMA embedding? In: Chiarini-Garcia H, Melo RCN (eds) Light microscopy: methods and protocols. Humana Press, Totowa, pp 37–49Google Scholar
  32. Panza V, Láinez V, Maldonado S (2004) Seed structure and histochemistry in the palm Euterpe edulis. Bot J Linn Soc 145:445–453CrossRefGoogle Scholar
  33. Pech y Aké A, Maust B, Orozco-Segovia A, Oropeza C (2007) The effect of gibberellic acid on the in vitro germination of coconut zygotic embryos and their conversion into plantlets. In Vitro Cell Dev Biol Plant 43:247–253CrossRefGoogle Scholar
  34. Pinheiro CUB (2002) Germination strategies of palms: the case of Schippia concolor Burret in Belize. Brittonia 53:519–527CrossRefGoogle Scholar
  35. Ribeiro LM, Garcia QS, Oliveira DMT, Neves SC (2010) Critérios para o teste de tetrazólio na estimativa do potencial germinativo em macaúba. Pesq Agrop Bras 45:361–368CrossRefGoogle Scholar
  36. Ribeiro LM, Neves SC, Silva PO, Andrade IG (2011) Germinação de embriões zigóticos e desenvolvimento in vitro de coquinho-azedo. Rev Ceres 58:133–139Google Scholar
  37. Ribeiro LM, Oliveira DMT, Garcia QS (2012) Structural evaluations of zygotic embryos and seedlings of the macaw palm (Acrocomia aculeata, Arecaceae). Trees 26:851–863CrossRefGoogle Scholar
  38. Silva VL, Moro FV, Damião Filho CF, Moro JR, Silva e Silva BM, Charlo HCO (2006) Morfologia e avaliação do crescimento inicial de plântulas de Bactris gasipaes Kunth. (Arecaceae) em diferentes substratos. Rev Bras Frut 28:477–480CrossRefGoogle Scholar
  39. Tzec-Sima MA, Orellana R, Robert ML (2006) In vitro rescue of isolated embryos of Bactris major Jacq. and Desmoncus orthacanthos Mart., potentially useful native palms from the Yucatan peninsula (Mexico). In Vitro Cell Dev Biol Plant 42:54–58Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • H. M. Magalhães
    • 1
  • P. S. N. Lopes
    • 1
  • L. M. Ribeiro
    • 2
  • B. F. Sant’Anna-Santos
    • 1
  • D. M. T. Oliveira
    • 3
  1. 1.Pós-Graduação em Ciências Agrárias, Instituto de Ciências AgráriasUniversidade Federal de Minas GeraisMontes ClarosBrazil
  2. 2.Departamento de Biologia GeralUnimontesMontes ClarosBrazil
  3. 3.Departamento de BotânicaUniversidade Federal de Minas GeraisBelo HorizonteBrazil

Personalised recommendations