, Volume 27, Issue 1, pp 37–52 | Cite as

Tree ring isotopic composition, radial increment and height growth reveal provenance-specific reactions of Douglas-fir towards environmental parameters

  • Kirstin Jansen
  • Jakob Sohrt
  • Ulrich Kohnle
  • Ingo Ensminger
  • Arthur GesslerEmail author
Original Paper


In the search of timber species being tolerant towards summer droughts, which are expected to be more frequent in future, Douglas-fir is often discussed as a potential alternative for spruce in Central Europe. To assess physiological and growth reactions of Douglas-fir provenances towards climate- and weather-related environmental conditions we took advantage of a provenance trial with three sites in south-western Germany located along an elevation gradient. We examined six different provenances of Douglas-fir from North America for oxygen (δ18O) and carbon (δ13C) stable isotope composition in tree rings as well as for radial increment for a 7 year period and long-term height growth. Our results show that different Douglas-fir provenances clearly vary in their drought sensitivity at the driest and warmest site in the valley as shown by the radial growth decline in the extreme dry and hot year 2003. The growth decline in the provenances Pamelia Creek, Cameron Lake, Duncan Paldi and Conrad Creek could be clearly attributed to a reduction in stomatal conductance as assessed by the relations between δ18O and δ13C in the tree rings. These responses were not related to the long-term average climate at the places of origin of the provenances and the provenances with the lowest long-term (height) growth potential were the ones least affected in radial increment by the extreme drought of 2003. When selecting suitable Douglas-fir provenances, which are adapted to the climatic conditions projected for the future we thus might need to take into account the trade-off between the adaptation to extreme drought periods and the long-term growth performance. Site-specific evaluations of the probability of extreme drought events are thus needed to select the appropriate provenances.


Stable isotopes Intrinsic water use efficiency Stomatal conductance 



We acknowledge financial support by Deutsche Forschungsgemeinschaft (DFG) under contract numbers GE1090/7-1, EN829/4-1, EN829/5-1 and by the Forstliche Versuchs-und Forschungsanstalt (FVA) Baden-Württemberg.

Supplementary material

468_2012_765_MOESM1_ESM.docx (242 kb)
Supplementary material 1 (DOCX 241 kb)


  1. Barbour MM, Fischer RA, Sayre KD, Farquhar GD (2000a) Oxygen isotope ratio of leaf and grain material correlates with stomatal conductance and grain yield in irrigated wheat. Aust J Plant Physiol 27:625–637Google Scholar
  2. Barbour MM, Schurr U, Henry BK, Wong SC, Farquhar GD (2000b) Variation in the oxygen isotope ratio of phloem sap sucrose from castor bean. Evidence in support of the Peclet effect. Plant Physiol 123:671–679PubMedCrossRefGoogle Scholar
  3. Bayerische Landesanstalt für Wald und Forstwirtschaft (2004) Waldzustandsbericht 2004: Bayerisches Staatsministerium für Landwirtschaft und Forsten, Bayerische Landesanstalt für Wald und Forstwirtschaft LWFGoogle Scholar
  4. Brandes E, Wenninger J, Koeniger P, Schindler D, Rennenberg H, Leibundgut C, Mayer H, Gessler A (2007) Assessing environmental and physiological controls over water relations in a Scots pine (Pinus sylvestris L.) stand through analyses of stable isotope composition of water and organic matter. Plant Cell Environ 30:113–127PubMedCrossRefGoogle Scholar
  5. Brandl H (1989) Ergänzende Untersuchungen zur Ertragslage der Baumarten Fichte, Kiefer, Buche und Eiche in Baden-Württemberg. Allgemeine Forst-und Jagd Zeitung 160:91–99Google Scholar
  6. Breda N, Huc R, Granier A, Dreyer E (2006) Temperate forest trees and stands under severe drought: a review of ecophysiological responses, adaptation processes and long-term consequences. Ann Forest Sci 63:625–644CrossRefGoogle Scholar
  7. Brenninkmeijer C (1983) Deuterium, oxygen-18 and carbon-13 in tree rings and peat deposits in relation to climate. University of Groningen, GroningenGoogle Scholar
  8. Brugnoli E, Hubick KT, vonCaemmerer S, Wong SC, Farquhar GD (1988) Correlation between the carbon isotope discrimination in leaf starch and sugars of C-3 plants and the ratio of intercellular and atmospheric partial pressures of carbon-dioxide. Plant Physiol 88:1418–1424PubMedCrossRefGoogle Scholar
  9. Campbell RK (1991) Soils, seed-zone maps, and physiography: guidelines for seed transfer of Douglas-Fir in Southwestern Oregon. Forest Sci 37:973–986Google Scholar
  10. Cernusak LA, Arthur DJ, Pate JS, Farquhar GD (2003) Water relations link carbon and oxygen isotope discrimination to phloem sap sugar concentration in Eucalyptus globulus. Plant Physiol 131:1544–1554PubMedCrossRefGoogle Scholar
  11. Cernusak LA, Farquhar GD, Pate JS (2005) Environmental and physiological controls over oxygen and carbon isotope composition of Tasmanian blue gum, Eucalyptus globulus. Tree Physiol 25:129–146PubMedCrossRefGoogle Scholar
  12. Ciais P, Reichstein M, Viovy N, Granier A, Ogee J, Allard V, Aubinet M, Buchmann N, Bernhofer C, Carrara A, Chevallier F, De Noblet N, Friend AD, Friedlingstein P, Grunwald T, Heinesch B, Keronen P, Knohl A, Krinner G, Loustau D, Manca G, Matteucci G, Miglietta F, Ourcival JM, Papale D, Pilegaard K, Rambal S, Seufert G, Soussana JF, Sanz MJ, Schulze ED, Vesala T, Valentini R (2005) Europe-wide reduction in primary productivity caused by the heat and drought in 2003. Nature 437:529–533PubMedCrossRefGoogle Scholar
  13. Craig H, Gordon LI (1965) Deuterium and oxygen-18 variations in the ocean and the marine atmosphere. In: Tongiorgi E (ed) In: Proceedings of a Conference on Stable Isotopes in Oceanographic Studies and Palaeotemperatures. Lischi and Figli, Spoleto pp 9–130Google Scholar
  14. Cuntz M, Ogee J, Farquhar GD, Peylin P, Cernusak LA (2007) Modelling advection and diffusion of water isotopologues in leaves. Plant Cell Environ 30:892–909PubMedCrossRefGoogle Scholar
  15. Dean CA (2007) Genotype and population performances and their interactions for growth of coastal Douglas-Fir in Western Washington. Forest Sci 53:463–472Google Scholar
  16. Dobbertin M (2005) Tree growth as indicator of tree vitality and of tree reaction to environmental stress: a review. Eur J Forest Res 124:319–333CrossRefGoogle Scholar
  17. Dongmann G, Nürnberg HW, Förstel H, Wagener K (1974) On the enrichment of H218O in the leaves of transpiring plants. Radiat Environ Biophys 11:41–52PubMedCrossRefGoogle Scholar
  18. Ehring A, Klädtke J, Yue C (1999) Ein interaktives Programm zur Erstellung von Bestandeshöhenkurven. Centralblatt für das gesamte Forstwesen 116:47–52Google Scholar
  19. Farquhar GD, Cernusak LA (2005) On the isotopic composition of leaf water in the non-steady state. Funct Plant Biol 32:293–303CrossRefGoogle Scholar
  20. Farquhar GD, O’ Leary MH, Berry JA (1982) On the relationship between carbon isotope discrimination and the inter-cellular carbon-dioxide concentration in leaves. Aust J Plant Physiol 9:121–137CrossRefGoogle Scholar
  21. Farquhar GD, Ehleringer JR, Hubick KT (1989) Carbon isotope discrimination and photosynthesis. Annu Rev Plant Physiol Plant Mol Biol 40:503–537CrossRefGoogle Scholar
  22. Farquhar GD, Barbour MM, Henry BK (1998) Interpretation of oxygen isotope composition of leaf material. In: Griffiths H (ed) Stable Isotopes—integration of biological, ecological and geochemical processes. Bios Scientific Publishers Ltd., Oxford, pp 27–74Google Scholar
  23. Franklin JF, Dyrness CT (1973) Natural vegetation of Oregon and Washington. Pacific Northwest Forest and Range Experiment Station. US Forest Service, U.S.Dep. of Agr, PortlandGoogle Scholar
  24. Gaul D, Hertel D, Borken W, Matzner E, Leuschner C (2008) Effects of experimental drought on the fine root system of mature Norway spruce. For Ecol Manage 256:1151–1159CrossRefGoogle Scholar
  25. Ge ZM, Zhou XA, Kellomaki S, Wang KY, Peltola H, Vaisanen H, Strandman H (2010) Effects of changing climate on water and nitrogen availability with implications on the productivity of Norway spruce stands in Southern Finland. Ecol Model 221:1731–1743CrossRefGoogle Scholar
  26. Gessler A, Brandes E, Buchmann N, Helle G, Rennenberg H, Barnard R (2009a) Tracing carbon and oxygen isotope signals from newly assimilated sugars in the leaves to the tree ring archive. Plant Cell Environ 32:780–795PubMedCrossRefGoogle Scholar
  27. Gessler A, Löw M, Heerdt C, de Beeck MO, Schumacher J, Grams TEE, Bahnweg G, Ceulemans R, Werner H, Matyssek R, Rennenberg H, Haberer K (2009b) Within-canopy and ozone fumigation effects on δ13C and Δ18O in adult beech (Fagus sylvatica) trees: relation to meteorological and gas exchange parameters. Tree Physiol 29:1349–1365PubMedCrossRefGoogle Scholar
  28. Grams TEE, Kozovits AR, Haberle KH, Matyssek R, Dawson TE (2007) Combining delta C-13 and delta O-18 analyses to unravel competition, CO2 and O-3 effects on the physiological performance of different-aged trees. Plant, Cell Environ 30:1023–1034CrossRefGoogle Scholar
  29. Granier A, Biron P, Lemoine D (2000) Water balance, transpiration and canopy conductance in two beech stands. Agric For Meteorol 100:291–308CrossRefGoogle Scholar
  30. Gugger PF, Sugita S, Cavender-Bares J (2010) Phylogeography of Douglas-fir based on mitochondrial and chloroplast DNA sequences: testing hypotheses from the fossil record. Mol Ecol 19:1877–1897PubMedCrossRefGoogle Scholar
  31. Hanewinkel M, Cullmann D, Michiels H-G (2010) Veränderte Bewertung infolge Klimawandel—Künftige Baumarteneignung für Fichte und Buche in Südwestdeutschland. AFZ-Der Wald 65:30–33Google Scholar
  32. Hattenschwiler S, Schweingruber FH, Korner C (1996) Tree ring responses to elevated CO2 and increased N deposition in Picea abies. Plant Cell Environ 19:1369–1378CrossRefGoogle Scholar
  33. Heidingsfelder A, Knoke T (eds) (2004) Douglasie versus Fichte—ein betriebswirtschaftlicher Leistungsvergleich auf der Grundlage des Provenienzversuches Kaiserslautern. Schriften zur Forstökonomie, 26. J.D. Sauerländer’s Verlag, Frankfurt/M, p 111Google Scholar
  34. Hermann RK, Lavender DP (1999) Douglas-fir planted forests. New Forest 17:53–70CrossRefGoogle Scholar
  35. IPCC (2007) Climate Change 2007 In: Solomon, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds) The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge, New York, p 996Google Scholar
  36. Jacob D, Lorenz P (2009) Sensitivity of future trends and variability in the hydrological cycle to different IPCC SRES emission scenarios—a case study for the Baltic Sea Region. Boreal Environ Res 14:100–113Google Scholar
  37. Jacob D, Barring L, Christensen JH, de Castro M, Deque M, Giorgi F, Hagemann S, Lenderink G, Rockel B, Sanchez E, Schaer C, Seneviratne SI, Somot S, van Ulden A, van den Hurk B (2007) An inter-comparison of regional climate models for Europe: model performance in present-day climate. Clim Change 81:31–52CrossRefGoogle Scholar
  38. Kenk G, Hradetzky J (1984) Behandlung und Wachstum der Douglasien in Baden-Württemberg. Ministerium für Ernährung, Landwirtschaft, Umwelt und Forsten, FreiburgGoogle Scholar
  39. Kenk G, Thren M (1984) Ergebnisse verschiedener Douglasienprovenienzversuche in Baden-Württemberg. Teil I: Der Internationale Douglasien-Provenienzversuch 1958. Allgemeine Forst und Jagdzeitung 155:165–184Google Scholar
  40. Kleinschmit J, Bastien JC (1992) IUFRO’s role in Douglas-Fir (Pseudotsuga menziesii (Mirb.) Franco) tree improvement. Silvae Genetica 41:161–173Google Scholar
  41. Leavitt SW (1993) Seasonal C-13/C-12 changes in tree rings—species and site coherence, and a possible drought influence. Can J Forest Res-Revue Canadienne de Recherche Forestiere 23:210–218CrossRefGoogle Scholar
  42. Leavitt SW (2002) Prospects for reconstruction of seasonal environment from tree-ring delta C-13: baseline findings from the Great Lakes area, USA. Chem Geol 192:47–58CrossRefGoogle Scholar
  43. Lebourgeois F, Rathgeber CBK, Ulrich E (2010) Sensitivity of French temperate coniferous forests to climate variability and extreme events (Abies alba, Picea abies and Pinus sylvestris). J Veg Sci 21:364–376CrossRefGoogle Scholar
  44. Levin I, Graul R, Trivett N (1995) Long-term observations of atmospheric CO2 and carbon isotopes at continental sites in Germany. Tellus Ser B Chem Phys Meteorol pp 23–34Google Scholar
  45. Livingston NJ, Spittlehouse DL (1996) Carbon isotope fractionation in tree ring early and late wood in relation to intra-growing season water balance. Plant Cell Environ 19:768–774CrossRefGoogle Scholar
  46. Makinen H, Nojd P, Mielikainen K (2001) Climatic signal in annual growth variation in damaged and healthy stands of Norway spruce Picea abies (L.) Karst. in southern Finland. Trees Struct Func 15:177–185CrossRefGoogle Scholar
  47. McCarroll D, Loader NJ (2004) Stable isotopes in tree rings. Quatern Sci Rev 23:771–801CrossRefGoogle Scholar
  48. Meier IC, Leuschner C (2008) Belowground drought response of European beech: fine root biomass and carbon partitioning in 14 mature stands across a precipitation gradient. Glob Change Biol 14:2081–2095CrossRefGoogle Scholar
  49. Meining S, Schröter H, Wilpert KV (2004) Waldzustandsbericht 2004. Freiburg: Forstliche Versuchs- und Forschungsanstalt Baden- WürttembergGoogle Scholar
  50. Pichler P, Oberhuber W (2007) Radial growth response of coniferous forest trees in an inner Alpine environment to heat-wave in 2003. For Ecol Manage 242:688–699CrossRefGoogle Scholar
  51. Poage MA, Chamberlain CP (2001) Empirical relationships between elevation and the stable isotope composition of precipitation and surface waters: considerations for studies of paleoelevation change. Am J Sci 301:1–15CrossRefGoogle Scholar
  52. Poussart PF, Evans MN, Schrag DP (2004) Resolving seasonality in tropical trees: multi-decade, high-resolution oxygen and carbon isotope records from Indonesia and Thailand. Earth Planet Sci Lett 218:301–316CrossRefGoogle Scholar
  53. Rizhsky L, Liang H, Mittler R (2002) The combined effect of drought stress and heat shock on gene expression in tobacco. Plant Physiol 130:1143–1151PubMedCrossRefGoogle Scholar
  54. Ryan MG, Gower ST, Hubbard RM, Waring RH, Gholz HL, Cropper WP, Running SW (1995) Woody tissue maintenance respiration of four conifers in contrasting climates. Oecologia 101:133–140CrossRefGoogle Scholar
  55. Sala A, Woodruff DR, Meinzer FC (2012) Carbon dynamics in trees: feast or famine? Tree Physiol 32:764–775PubMedCrossRefGoogle Scholar
  56. Saurer M (2003) The influence of climate on the oxygen isotopes in tree rings. Isot Environ Health Stud 39:105–112CrossRefGoogle Scholar
  57. Saurer M, Aellen K, Siegwolf R (1997) Correlating delta C-13 and delta O-18 in cellulose of trees. Plant Cell Environ 20:1543–1550CrossRefGoogle Scholar
  58. Scheidegger Y, Saurer M, Bahn M, Siegwolf R (2000) Linking stable oxygen and carbon isotopes with stomatal conductance and photosynthetic capacity: a conceptual model. Oecologia 125:350–357CrossRefGoogle Scholar
  59. Schleser GH, Helle G, Lucke A, Vos H (1999) Isotope signals as climate proxies: the role of transfer functions in the study of terrestrial archives. Quatern Sci Rev 18:927–943CrossRefGoogle Scholar
  60. Seibt U, Rajabi A, Griffiths H, Berry JA (2008) Carbon isotopes and water use efficiency: sense and sensitivity. Oecologia 155:441–454PubMedCrossRefGoogle Scholar
  61. Sternberg L, Deniro MJ (1983) Bio-geochemical implications of the isotopic equilibrium fractionation factor between oxygen atoms of acetone and water. Geochim Cosmochim Acta 47:2271–2274CrossRefGoogle Scholar
  62. Strehlke B (1959) Die Ernte von Douglasiensamen in USA und Kanada-Folgerungen für die deutsche Forstwirtschaft. Der Forst-und Holzwirt 14:295–300Google Scholar
  63. Teuffel Kv (2010) Naturnaher Waldbau und Klimawandel. AFZ-Der Wald 65:33–36Google Scholar
  64. Treydte K, Schleser GH, Schweingruber FH, Winiger M (2001) The climatic significance of delta C-13 in subalpine spruces (Lotschental, Swiss Alps)—a case study with respect to altitude, exposure and soil moisture. Tellus Series B-Chemical and Physical Meteorology 53:593–611CrossRefGoogle Scholar
  65. Treydte KS, Schleser GH, Helle G, Frank DC, Winiger M, Haug GH, Esper J (2006) The twentieth century was the wettest period in northern Pakistan over the past millennium. Nature 440:1179–1182PubMedCrossRefGoogle Scholar
  66. van der Werf GW, Sass-Klaassen UGW, Mohren GMJ (2007) The impact of the 2003 summer drought on the intra-annual growth pattern of beech (Fagus sylvatica L.) and oak (Quercus robur L.) on a dry site in the Netherlands. Dendrochronologia 25:103–112CrossRefGoogle Scholar
  67. Yue C, Kohnle U, Hanewinkel M, Klädtke J (2011) Extracting environmentally driven growth trends from diameter increment series based on a multiplicative decomposition model. Can J For Res 41:1577–1589CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • Kirstin Jansen
    • 1
  • Jakob Sohrt
    • 2
  • Ulrich Kohnle
    • 3
  • Ingo Ensminger
    • 3
    • 4
  • Arthur Gessler
    • 1
    • 2
    Email author
  1. 1.Institute for Landscape BiogeochemistryLeibniz Centre for Agricultural Landscape Research (ZALF)MünchebergGermany
  2. 2.Core Facility Metabolomics, Centre for Systems Biology (ZBSA)Albert-Ludwigs-University FreiburgFreiburgGermany
  3. 3.Forest Research Institute Baden-Württemberg (FVA)FreiburgGermany
  4. 4.Department of BiologyUniversity of TorontoMississaugaCanada

Personalised recommendations