, Volume 26, Issue 6, pp 1805–1819 | Cite as

Tree-ring responses in Araucaria araucana to two major eruptions of Lonquimay Volcano (Chile)

  • Roberto Tognetti
  • Fabio Lombardi
  • Bruno Lasserre
  • Giovanna Battipaglia
  • Matthias Saurer
  • Paolo Cherubini
  • Marco Marchetti
Original Paper


Palaeoclimate proxies have demonstrated links between climate changes and volcanic activity. However, not much is known about the impact of volcanic eruptions on forest productivity. Here we used tree-ring width and annually resolved carbon and oxygen isotopic records from tree rings of Araucaria araucana (Molina) K. Koch, providing a centennial-scale reconstruction of tree ecophysiological processes in forest stands nearby the Lonquimay Volcano (Chile). We observed a mean decrease in tree-ring width following the major eruption of 19881990 (with aerosol emission), most probably caused by the modified ecological conditions due to acid rain and ash deposition, while a generally negative relationship between δ13C and δ18O would point to a decline in humidity and precipitation. More negative δ13C and lower δ18O values (positive correlation) following the major eruption of 1887–1890 (without aerosol emission) would suggest high stomatal conductance and moisture availability, though tree-ring width (and probably photosynthetic rate) was unaltered. At least for this sample of trees, in the case of eruption with large tephra emission, the beneficial effect of aerosol light scattering on tree productivity appears to be outweighed by the detrimental effect of eruption-induced toxic deposition. Signals of the two major eruptions of the past 200 years at Lonquimay were present in tree rings of nearby A. araucana. No unique response of tree functions to volcanic eruptions can be expected, but rather (1) the variable volcanic properties and (2) the complex interplay of diffuse light increase (aerosol scattering), air temperature decrease (cloud shading), and toxic deposition impact (volcanic ash), makes any prediction of tree growth and ecophysiological response very challenging.


Araucaria araucana (Molina) K. Koch Chilean forests Dendrochronology Lonquimay Stable isotopes Tree rings 


  1. Araya O, Wittwer F, Villa A (1993) Evolution of fluoride concentrations in cattle and grass following a volcanic eruption. Vet Hum Toxicol 35:437–440PubMedGoogle Scholar
  2. Adams MA, Grierson PF (2001) Stable isotopes at natural abundance in terrestrial plant ecology and ecophysiology: an update. Plant Biol 3:299–310CrossRefGoogle Scholar
  3. Angert A, Biraud S, Bonfils C, Buermann W, Fung I (2004) CO2 seasonality indicates origins of post-Pinatubo sink. Geophys Res Lett 31:L11103CrossRefGoogle Scholar
  4. Armesto JJ, Arroyo MTK, Hinojosa LF (2007) The Mediterranean environment of central Chile. In: Veblen TT, Young KR, Orne AR (eds) The physical geography of South America. Oxford University Press, Oxford, pp 184–199Google Scholar
  5. Baillie MGL, Munro MAR (1988) Irish tree rings, Santorini and volcanic dust veils. Nature 332:344–346CrossRefGoogle Scholar
  6. Barbour MM (2007) Stable oxygen isotope composition of plant tissue: a review. Funct Plant Biol 34:83–94CrossRefGoogle Scholar
  7. Barbour MM, Farquhar GD (2000) Relative humidity- and ABA-induced variation in carbon and oxygen isotope ratios of cotton leaves. Plant Cell Environ 23:473–485CrossRefGoogle Scholar
  8. Barbour MM, Walcroft AS, Farquhar GD (2002) Seasonal variation in δ13C and δ18O of cellulose from growth rings of Pinus radiata. Plant Cell Environ 25:1483–1499CrossRefGoogle Scholar
  9. Battipaglia G, Cherubini P, Saurer M, Siegwolf RTW, Strumia S, Cotrufo MF (2007) Volcanic explosive eruptions of the Vesuvio decrease tree-ring growth but not photosynthetic rates in the surrounding forests. Global Change Biol 13:1122–1137CrossRefGoogle Scholar
  10. Battipaglia G, Jäggi M, Saurer M, Siegwolf RTW, Cotrufo MF (2008) Climatic sensitivity of δ18O in the wood and cellulose of tree rings: results from a mixed stand of Acer pseudoplatanus L. and Fagus sylvatica L. Paleogeo Paleoclimatol Paleoecol 261:193–202CrossRefGoogle Scholar
  11. Biondi F (2000) Are climate–tree growth relationships changing in north-central Idaho, USA? Arct Ant Alp Res 32:111–116CrossRefGoogle Scholar
  12. Biondi F, Fessenden JE (1999) Response of lodgepole pine growth to CO2 degassing at Mammoth Mountain, California. Ecology 80:2420–2426Google Scholar
  13. Biondi F, Estrada IG, Galvilanes Ruiz JC, Torres AE (2003) Tree growth response to the 1913 eruption of Volcán de Fuego de Colima, Mexico. Quatern Res 59:293–299CrossRefGoogle Scholar
  14. Boninsegna JA, Argollo J, Aravena JC, Barichivich J, Christie D, Ferrero ME, Lara A, Le Quesne C, Luckman BH, Masiokas M, Morales M, Oliveira JM, Roig F, Srur A, Villalba R (2009) Dendroclimatological reconstructions in South America: a review. Palaeogeo Palaeoclim Palaeoecol 281:210–228CrossRefGoogle Scholar
  15. Borella S, Leuenberger M, Saurer M, Siegwolf R (1998) Reducing uncertainties in δ13C analysis of tree rings: poolings, milling and cellulose extraction. J Geophys Res 103:19519–19526CrossRefGoogle Scholar
  16. Briffa KR, Jones PD, Schweingruber FH, Osborn TJ (1998) Influence of volcanic eruptions on Northern Hemisphere summer temperatures over the past 600 years. Nature 393:450–455CrossRefGoogle Scholar
  17. Cohan DS, Xu J, Greenwald R, Bergin MH, Chameides WL (2002) Impact of atmospheric aerosol light scattering and absorption on terrestrial net primary productivity. Glob Biogeochem Cycles 16:25–34CrossRefGoogle Scholar
  18. Cook ER, Briffa K, Shiyatov S, Mazepa V (1990) Tree-ring standardization and growth-trend estimation. In: Cook ER, Kairiukstis L (eds) Methods of dendrochronology. Kluwer, Amsterdam, pp l04–132Google Scholar
  19. Cullen LE, Grierson PF (2006) Is cellulose extraction necessary for developing stable carbon and oxygen isotope chronologies from Callitris glaucophylla? Palaeogeo Palaeoclim Palaeoecol 236:206–216CrossRefGoogle Scholar
  20. Cullen LE, Adams MA, Anderson MJ, Grierson PF (2008) Analyses of δ13C and δ18O in tree rings of Callitris columellaris provide evidence of a change in stomatal control of photosynthesis in response to regional changes in climate. Tree Physiol 28:1525–1533PubMedCrossRefGoogle Scholar
  21. D’Arrigo R, Jacoby G (1999) Northern North American tree-ring evidence for regional temperature changes after major volcanic events. Clim Change 41:1–15CrossRefGoogle Scholar
  22. D’Arrigo R, Frank D, Jacoby G, Pederson N (2001) Spatial response to major volcanic events in or about AD 536, 934 and 1258: Frost rings and other dendrochronological evidence from Mongolia and Northern Siberia. Clim Change 49:239–246CrossRefGoogle Scholar
  23. D’Arrigo R, Wilson R, Tudhope A (2009) The impact of volcanic forcing on tropical temperatures during the past four centuries. Nat Geosci 2:51–56CrossRefGoogle Scholar
  24. Donoso CZ, Lara AA (1999) Silvicultura de los Bosques Nativos de Chile. Editorial Universitaria, SantiagoGoogle Scholar
  25. Dowse HB, Ringo JM (1989) The search for hidden periodicities in biological time series revisited. J Theor Biol 139:487–515CrossRefGoogle Scholar
  26. Duchesne L, Ouimet R, Houle D (2002) Basal area growth of sugar maple in relation to acid deposition, stand health, and soil nutrients. J Environ Q 31:1676–1683CrossRefGoogle Scholar
  27. Eggler WA (1967) Influence of volcanic eruptions on xylem growth patterns. Ecology 48:644–647CrossRefGoogle Scholar
  28. Emparan C, Suárez M, Muñoz J (1992) Hoja Curacautín, Regiones de la Araucanía y del Biobío. Servicio Nacional de Geología y Minería. Carta Geológica de Chile, No. 71, escala 1:250.000Google Scholar
  29. Farquhar GD, O’ Leary MH, Berry JA (1982) On the relationship between carbon isotope discrimination and the intercellular carbon-dioxide concentration in leaves. Aust J Plant Physiol 9:121–137CrossRefGoogle Scholar
  30. Farquhar GD, Barbour MM, Henry BK (1998) Interpretation of oxygen isotope composition of leaf material. In: Griffiths EH (ed) Stable isotopes: integration of biological, ecological and geochemical processes. BIOS Scientific Publishers, Oxford, pp 27–62Google Scholar
  31. Francey RJ, Allison CE, Etheridge DM, Trudinger CM, Enting IG, Leuenberger M, Landgenfelds RL, Michel E, Steele LP (1999) A 1000-year high precision record of δ13C in atmospheric CO2. Tellus 51B:170–193Google Scholar
  32. Fritts HC (1976) Tree rings and climate. Academic Press, LondonGoogle Scholar
  33. Fuenzalida H (1965) Geografía Económica de Chile. Corporación de Fomento de la Producción (CORFO), Santiago de Chile, pp 130–267Google Scholar
  34. Gower ST, Vogt KA, Grier CC (1992) Carbon dynamics of Rocky Mountain Douglas-fir-influence of water and nutrient availability. Ecol Monogr 62:43–65CrossRefGoogle Scholar
  35. Gu L, Baldocchi DD, Verma SB, Black TA, Vesala T, Falge EM, Dowty PR (2002) Advantages of diffuse radiation for terrestrial ecosystem productivity. J Geophys Res 107:31421–31434Google Scholar
  36. Gu L, Baldocchi DD, Wofsy SC, Munger JW, Michalsky JJ, Urbanski SP, Boden TA (2003) Response of a deciduous forest to the mount Pinatubo Eruption: enhanced photosynthesis. Science 299:2035–2038PubMedCrossRefGoogle Scholar
  37. Hammer Ø, Harper DAT (2006) Palaeontological data analysis. Blackwell, Cambridge, p 351Google Scholar
  38. Hill SA, Waterhouse JS, Field EM, Switsur VR, ap Rees T (1995) Rapid recycling of triose phosphates in oak stem tissue. Plant Cell Environ 18:931–936CrossRefGoogle Scholar
  39. Holmes RL (1983) Computer-assisted quality control in tree ring dating and measurement. Tree-Ring Bull 43:69–78Google Scholar
  40. Jäggi M, Saurer M, Fuhrer J, Siegwolf R (2003) Seasonality of δ18O in needles and wood of Picea abies. New Phytol 158:51–59CrossRefGoogle Scholar
  41. Kaennel M, Schweingruber FH (1995) Multilingual glossary of dendrochronology. Terms and definitions in English, Spanish, Italian, Portuguese, and Russian. Swiss Federal Institute for Forest, Snow and Landscape Research, Haupt, BernGoogle Scholar
  42. Keitel C, Matzarakis A, Rennenberg H, Gessler A (2006) Carbon isotopic composition and oxygen isotopic enrichment in phloem and total leaf organic matter of European beech (Fagus sylvatica L.) along a climate gradient. Plant Cell Environ 29:1492–1507PubMedCrossRefGoogle Scholar
  43. Korol R, Kirschbaum M, Farquhar G, Jeffreys M (1999) Effects of water status and soil fertility on the C-isotope signature in Pinus radiata. Tree Physiol 19:551–562PubMedCrossRefGoogle Scholar
  44. Krakauer NY, Randerson JT (2003) Do volcanic eruptions enhance or diminish net primary production? Evidence from tree rings. Glob Biogeochem Cycles 17:1118CrossRefGoogle Scholar
  45. LaMarche VC Jr, Hirschboek KK (1984) Frost rings in trees as records of major volcanic eruptions. Nature 307:121–126CrossRefGoogle Scholar
  46. Lara A, Wolodarsky-Franke A, Aravena JC, Villalba R, Solari ME, Pezoa L, Rivera A, Le Quesne C (2005) Climate fluctuations derived from tree-rings and other proxy-records in the Chilean Andes: State of the art and future prospects. In: Huber UM, Bugmann HKM, Reasoner MA (eds) Advances in global change research, vol 23, Global change and mountain regions an overview of current knowledge. Springer, Berlin, pp 145–156Google Scholar
  47. Leavitt SW (1993) Seasonal C-13/C-12 changes in tree rings—species and site coherence, and a possible drought influence. Can J For Res 23:210–218CrossRefGoogle Scholar
  48. Leavitt SW, Long A (1986) Stable-carbon isotope variability in tree foliage and wood. Ecology 67:1002–1010CrossRefGoogle Scholar
  49. Lipp J, Trimborn P, Fritz P, Moser H, Becker B, Frenzel B (1991) Stable isotope in tree ring cellulose and climatic change. Tellus 43B:322–330Google Scholar
  50. Loader NJ, Robertson I, Barker AC, Switsur VR, Waterhouse JS (1997) An improved technique for the batch processing of small whole wood samples to alpha-cellulose. Chem Geol 136:313–317CrossRefGoogle Scholar
  51. Lough JM, Fritts HC (1987) An assessment of the possible effects of volcanic eruptions on North American climate using tree-ring data, 1602 to 1900 ad. Clim Change 10:219–239CrossRefGoogle Scholar
  52. Lucht W, Prentice IC, Myneni RB, Sitch S, Friedlindstein P, Cramer W, Bousquet P, Buermann W, Smith B (2002) Climatic control of the high-latitude vegetation greening trend and Pinatubo effect. Science 296:1687–1689PubMedCrossRefGoogle Scholar
  53. Mather TA, Tsanev VI, Pyle DM, McGonigle AJS, Oppenheimer C, Allen AG (2004) Characterization and evolution of trophospheric plumes from Lascar and Villarrica volcanoes, Chile. J Geophys Res 109:D21303CrossRefGoogle Scholar
  54. McCarroll D, Loader NJ (2004) Stable isotopes in tree rings. Quat Sci Rev 23:771–801CrossRefGoogle Scholar
  55. McCarroll D, Pawellek F (2001) Stable carbon isotope ratios of Pinus sylvestris from northern Finland and the potential for extracting a climate signal from long Fennoscandian chronologies. Holocene 11:517–526CrossRefGoogle Scholar
  56. Mercado LM, Bellouin N, Sitch S, Boucher O, Huntingford C, Wild M, Cox PM (2009) Impact of changes in diffuse radiation on the global land carbon sink. Nature 458:1014–1018PubMedCrossRefGoogle Scholar
  57. Miller A (1976) The climate of Chile. In: Schwerdtfeger W (ed) World survey of climatology. Climates of Central and South America. Elsevier, Amsterdam, pp 113–131Google Scholar
  58. Molineaux B, Ineichen P (1996) Impact of Pinatubo aerosols on the seasonal trends of global, direct and diffuse irradiance in two northern mid-latitude sites. Sol Energy 58:91–101CrossRefGoogle Scholar
  59. Moreno H, Gardeweg MC (1989) La erupción reciente en el complejo volcánico Lonquimay (Diciembre 1988-), Andes del Sur. Rev Geol Chile 16:93–117Google Scholar
  60. Mundo IA, Roig Juñent FA, Villalba R, Kitzberger T, Barcelo MB (2012) Araucaria araucana tree-ring chronologies in Argentina: spatial growth variations and climate influences. Trees 26:443–458CrossRefGoogle Scholar
  61. Naranjo JA, Sparks RSJ, Stasiuk MV, Moreno H, Ablay GJ (1992) Morphological, structural and textural variations in the 1988–1990 Andesite lava of Lonquimay Volcano, Chile. Geol Mag 129:657–678CrossRefGoogle Scholar
  62. Neufeld HS, Jernstedt JA, Haines BL (1985) Direct foliar effects of simulated acid rain. New Phytol 99:389–405CrossRefGoogle Scholar
  63. Pearson CL, Dale DS, Brewer PW, Kuniholm PI, Lipton J, Manning SW (2009) Dendrochemical analysis of a tree-ring growth anomaly associated with the Late Bronze Age eruption of Thera. J Archaeol Sci 36:1206–1214CrossRefGoogle Scholar
  64. Pounds J, Puschendorf R (2004) Ecology: clouded futures. Nature 427:107–109PubMedCrossRefGoogle Scholar
  65. Poussart PF, Evans MN, Schrag DP (2004) Resolving seasonality in tropical trees: multi-decade, high resolution oxygen and carbon isotope records from Indonesia and Thailand. Earth Planet Sci Lett 218:301–316CrossRefGoogle Scholar
  66. Robock A (2000) Volcanic eruptions and climate. Rev Geophys 38:191–219CrossRefGoogle Scholar
  67. Robock A, Free M (1995) Ice cores as an index of global volcanism from 1850 to the present. J Geophys Res 100:11549–11567CrossRefGoogle Scholar
  68. Roderick M, Farquhar GD, Berry S, Noble I (2001) On the direct effect of clouds and atmospheric particles on the productivity and structure of vegetation. Oecologia 129:21–30CrossRefGoogle Scholar
  69. Roden JS, Johnstone J, Dawson TE (2009) Intra-annual variation in the stable oxygen and carbon isotope ratios of cellulose in tree rings of coast redwood (Sequoia sempervirens). Holocene 19:189–197CrossRefGoogle Scholar
  70. Ruggieri F, Fernandez-Turiel JL, Saavedra J, Gimeno D, Polanco E, Naranjo JA (2011) Environmental geochemistry of recent volcanic ashes from Southern Andes. Environ Chem 8:236–247CrossRefGoogle Scholar
  71. Salzer MW, Hughes MK (2007) Bristlecone pine tree rings and volcanic eruptions over the last 5000 yr. Quat Res 67:57–68CrossRefGoogle Scholar
  72. Saurer M, Aellen K, Siegwolf R (1997) Correlating δ13C and δ18O in cellulose of trees. Plant Cell Environ 20:1543–1550CrossRefGoogle Scholar
  73. Scharf LL (1991) Statistical signal processing. Addison-Wesley, New YorkGoogle Scholar
  74. Scheidegger Y, Saurer M, Bahn M, Siegwolf RTW (2000) Linking stable oxygen and carbon isotopes with stomatal conductance and photosynthetic capacity: a conceptual model. Oecologia 125:350–357CrossRefGoogle Scholar
  75. Schulze E-D, Oren R, Lange OL (1989) Processes leading to forest decline: a synthesis. In: Schulze E-D, Lange OL, Oren R (eds) Forest decline and air pollution, Ecological studies, vol 77, pp 459–468Google Scholar
  76. Schweingruber FH (1998) Tree rings: basics and applications of dendrochronology. Kluwer, DordrechtGoogle Scholar
  77. Scuderi LA (1990) Tree ring evidence for climatically effective volcanic eruptions. Quat Res 34:67–85CrossRefGoogle Scholar
  78. Seymour VA, Hinckley TM, Morikawa Y, Franklin JF (1983) Foliage damage in 7 coniferous trees following volcanic ashfall from Mt. St. Helens (Washington State). Oecologia 59:339–343CrossRefGoogle Scholar
  79. Sheppard PR, Ort MH, Anderson KC, Elson MD, Vázquez-Selem L, Clemens AW, Little NC, Speakman RJ (2008) Multiple dendrochronological signals indicate the eruption of Parícutin volcano, Michoacán, Mexico. Tree-Ring Res 64:97–108CrossRefGoogle Scholar
  80. Shumilov OI, Kasatkina EA, Mielikainen K, Timonen M, Kanatjev AG (2011) Palaeovolcanos, solar activity and pine tree-rings from the Kola Peninsula (northwestern Russia) over the last 560 years. Int J Environ Res 5:855–864Google Scholar
  81. Smithsonian Institution (1989) Lonquimay. Scientific Event Alert Network (SEAN) Bulletin 14:6–7Google Scholar
  82. Solomina O, Pavlova I, Curtis A, Jacoby G, Ponomareva V, Pevsner M (2008) Constraining recent Shiveluch volcano eruptions (Kamchatka, Russia) by means of dendrochronology. Natural Hazards Earth Syst Sci 8:1083–1097CrossRefGoogle Scholar
  83. Stewart JD, El Abidine AZ, Bernier PY (1994) Stomatal and mesophyll limitations of photosynthesis in black spruce seedlings during multiple cycles of drought. Tree Physiol 15:57–64CrossRefGoogle Scholar
  84. Switsur VR, Waterhouse JS, Field EM, Carter AHC (1996) Climatic signals from stable isotopes in oak tree rings from East Anglia, Great Britain. In: Dean JS, Meko DM, Swetnam TW (eds) Tree rings, environment and humidity: proceedings of the international conference, radiocarbon, Tucson, pp 637–645Google Scholar
  85. Tene A, Tobin B, Dyckmans J, Ray D, Black K, Nieuwenhuis M (2012) Assessment of tree response to drought: validation of a methodology to identify and test proxies for monitoring past environmental changes in trees. Tree Physiol 31:309–322CrossRefGoogle Scholar
  86. Veblen TT, Armesto JJ, Burns BR, Kitzberger T, Lara A, León B, Young KR (2005) The coniferous forests of South America. In: Andersson F, Gessel S (eds) Ecosystems of the World, Coniferous Forests, Elsevier, Amsterdam, pp 701–725Google Scholar
  87. Villalba R, Lara A, Boninsegna JA, Masiokas M, Delgado S, Aravena JC, Roig FA, Schmelter A, Wolodarsky A, Ripalta A (2003) Large-scale temperature changes across the Southern Andes: 20th century variations in the context of the past 400 years. Clim Change 59:177–232CrossRefGoogle Scholar
  88. Yamaguchi DK (1983) New tree ring dates for recent eruptions of Mount St. Helens. Quat Res 20:246–250CrossRefGoogle Scholar
  89. Yamaguchi DK (1985) Tree-ring evidence for a two-year interval between recent prehistoric explosive eruptions of Mount St. Helens. Geology 13:554–557CrossRefGoogle Scholar
  90. Yamaguchi DK, Lawrence DB (1993) Tree-ring evidence for 1842–1843 eruptive activity at the Goat Rocks dome, Mount St. Helens, Washington. Bull Volcanol 55:264–272CrossRefGoogle Scholar
  91. Zhou LM, Tucker CJ, Kaufmann RK, Slayback D, Shabanov NV, Myneni RB (2001) Variations in northern vegetation activity inferred from satellite data of vegetation index during 1981 to 1999. J Geophys Res 106:20069–20083CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • Roberto Tognetti
    • 1
  • Fabio Lombardi
    • 1
  • Bruno Lasserre
    • 1
  • Giovanna Battipaglia
    • 2
  • Matthias Saurer
    • 3
  • Paolo Cherubini
    • 4
  • Marco Marchetti
    • 1
  1. 1.Dipartimento di Bioscienze e TerritorioUniversità degli Studi del MolisePescheItaly
  2. 2.Dipartimento di Scienze AmbientaliSeconda Università di NapoliCasertaItaly
  3. 3.PSI, Paul Scherrer InstitutVilligenSwitzerland
  4. 4.WSL, Swiss Federal Institute for ForestSnow and Landscape ResearchBirmensdorfSwitzerland

Personalised recommendations