Trees

, Volume 26, Issue 6, pp 1713–1721 | Cite as

Flux-based ozone risk assessment for adult beech forests

  • Ludger Grünhage
  • Rainer Matyssek
  • Karl-Heinz Häberle
  • Gerhard Wieser
  • Ursula Metzger
  • Michael Leuchner
  • Annette Menzel
  • Jochen Dieler
  • Hans Pretzsch
  • Winfried Grimmeisen
  • Lothar Zimmermann
  • Stephan Raspe
Original Paper

Abstract

Tropospheric ozone (O3) is a critical threat to forest ecosystems. A stomatal flux-based risk evaluation methodology at the leaf level was established recently in the context of the Convention on Long-Range Transboundary Air Pollution (LRTAP). This study demonstrates improvement and validation of the stomatal flux-effect approach for adult beech with results from the 8-year free-air O3 enrichment experiment at “Kranzberger Forst” (Germany). The risk assessment module of the SVAT model FO3REST, being under development for local scale O3-risk assessment of adult beech stands, was parameterized according to the LRTAP Convention’s Mapping Manual. Mean maximum stomatal conductance for water vapour of 245 mmol H2O m−2 PLA s−1, as suggested in the LRTAP Convention’s Mapping Manual for beech, was affirmed by assessment at “Kranzberger Forst”, resulting in 162 mmol O3 m−2 PLA s−1 upon recommended adjustment of the O3/water vapour diffusivity ratio to 0.663. Based on this ratio, a provisional corrected flux-effect function was deduced. Modelled Phytotoxic O3 Doses (POD1) and potential O3-caused losses in biomass formation estimated with a site-specific stomatal conductance algorithm differed slightly only from estimates by the original LRTAP parameterisation. Analysis-derived POD1 target value within the meaning of Article 2 of the European Council Directive 2008/50/EC of 10 mmol O3 m−2 corresponded to potential loss in biomass formation of about 10 % in ambient air relative to “pre-industrial” conditions. However, exceedance occurred by about a factor of two during the study period, indicating high risk at “Kranzberger Forst” under ambient air. Assessment for doubled O3 exposure indicated potential underestimation even of the O3 risk because modelled losses in biomass formation are in the lower range of the standard deviation of the observed ones.

Keywords

Ozone Beech Risk assessment Model validation LRTAP Convention 

References

  1. Braun S, Flückiger W (1995) Effects of ambient ozone on seedlings of Fagus sylvatica L. and Picea abies (L.) Karst. New Phytol 129:33–44CrossRefGoogle Scholar
  2. Dämmgen U, Grünhage L (1998) Response of a grassland ecosystem to air pollutants. V. A toxicological model for the assessment of dose-response relationships for air pollutants and ecosystems. Environ Pollut 101:375–380CrossRefGoogle Scholar
  3. Dämmgen U, Grünhage L, Haenel HD, Jäger HJ (1993) Climate and stress in ecotoxicology. A coherent system of definitions and terms. Angew Bot 67:157–162Google Scholar
  4. EU (2008) Council Directive 2008/50/EC of the European Parliament and of the Council of 21 May 2008 on ambient air quality and cleaner air for Europe. Offic J Eur Union L152:1–44Google Scholar
  5. Grünhage L, Haenel HD (2008) Detailed documentation of the PLATIN (PLant-ATmosphere INteraction) model. Landbauforsch Volk special issue 319: 1–85. (Available at http://www.uni-giessen.de/cms/ukl-en/PLATIN)
  6. Grünhage L, Jäger HJ (1996) Critical levels for ozone, ozone exposure potentials of the atmosphere or critical absorbed doses for ozone: a general discussion. In: Kärenlampi L, Skärby L (eds) Critical levels for ozone in Europe: testing and finalizing the concepts. UN-ECE workshop report. University of Kuopio, Department of Ecology and Environmental Science, Kuopio, pp 151–168Google Scholar
  7. Grünhage L, Braden H, Bender J, Burkart S, Lehmann Y, Schröder M (2011) Evaluation of the ozone-related risk for winter wheat at local scale with the CRO3PS model. Gefahrst Reinhalt L 71:90–97 (available at http://www.uni-giessen.de/cms/CRO3PS)
  8. Grünhage L, Pleijel H, Mills G, Bender J, Danielsson H, Lehmann Y, Castell JF, Bethenod O (2012) Updated stomatal flux and flux-effect models for wheat for quantifying effects of ozone on grain yield, grain mass and protein yield. Environ Pollut 165:147–157Google Scholar
  9. Hammel K, Kennel M (2001) Charakterisierung und Analyse der Wasserverfügbarkeit und des Wasserhaushalts von Waldstandorten in Bayern mit dem Simulationsmodell BROOK90. Forstliche Forschungsberichte No. 185, MünchenGoogle Scholar
  10. Hayes F, Mills G, Harmens H, Norris D (2007) Evidence of widespread ozone damage to vegetation in Europe. ICP Vegetation Programme Coordination Centre, Centre for Ecology and Hydrology, Bangor, pp 58. http://icpvegetation.ceh.ac.uk)
  11. Jarvis PG (1976) The interpretation of the variations in leaf water potential and stomatal conductance found in canopies in the field. Philos T R Soc B 273:593–610CrossRefGoogle Scholar
  12. Karnosky DF, Werner H, Holopainen T, Percy K, Oksanen T, Oksanen E, Heerdt C, Fabian P, Nagy J, Heilman W, Cox R, Nelson N, Matyssek R (2007) Free-air exposure systems to scale up ozone research to mature trees. Plant Biol 9:181–190PubMedCrossRefGoogle Scholar
  13. Kitao M, Löw M, Heerdt C, Grams TEE, Häberle K-H, Matyssek R (2009) Effects of chronic elevated ozone exposure on gas exchange responses of adult beech trees (Fagus sylvatica) as related to the within-canopy light gradient. Environ Pollut 157:537–544PubMedCrossRefGoogle Scholar
  14. Löw M, Herbinger K, Nunn AJ, Häberle K-H, Leuchner M, Heerdt C, Werner H, Wipfler P, Pretzsch H, Tausz M, Matyssek R (2006) Extraordinary drought of 2003 overrules ozone impact on adult beech trees (Fagus sylvatica). Trees 20:539–548CrossRefGoogle Scholar
  15. LRTAP Convention (2010) Mapping Manual 2004. Manual on methodologies and criteria for modelling and mapping critical loads & levels and air pollution effects, risk and trends. chap 3, Mapping critical levels for vegetation. 2010 revision. (Available at http://icpvegetation.ceh.ac.uk)
  16. Mason EA, Kronstadt B (1967) Graham’s laws of diffusion and effusion. J Chem Educ 44:740–744CrossRefGoogle Scholar
  17. Massman WJ (1998) A review of the molecular diffusivities of H2O, CO2, CH4, CO, O3, SO2, NH3, N2O, NO, and NO2 in air, O2 and N2 near STP. Atmos Environ 32:1111–1127CrossRefGoogle Scholar
  18. Massman WJ (1999) Molecular diffusivities of Hg vapor in air, O2 and N2 near STP and the kinematic viscosity and thermal diffusivity of air near STP. Atmos Environ 33:453–457CrossRefGoogle Scholar
  19. Massman WJ, Musselman RC, Lefohn AS (2000) A conceptual ozone dose-response model to develop a standard to protect vegetation. Atmos Environ 34:745–759CrossRefGoogle Scholar
  20. Matyssek R, Sandermann H (2003) Impact of ozone on trees: an ecophysiological perspective. Prog Bot 64:349–404CrossRefGoogle Scholar
  21. Matyssek R, Wieser G, Nunn AJ, Kozovits AR, Reiter IM, Heerdt C, Winkler JB, Baumgarten M, Häberle K-H, Grams TEE, Werner H, Fabian P, Havranek WM (2004) Comparison between AOT40 and ozone uptake in forest trees of different species, age and site conditions. Atmos Environ 38:2271–2281CrossRefGoogle Scholar
  22. Matyssek R, Bytnerowicz A, Karlsson PE, Paoletti E, Sanz M, Schaub M, Wieser G (2007) Promoting the O3 flux concept for European forest trees. Environ Pollut 146:587–607PubMedCrossRefGoogle Scholar
  23. Matyssek R, Sandermann H, Wieser G, Booker F, Cieslik S, Musselman R, Ernst D (2008) The challenge of making ozone risk assessment for forest trees more mechanistic. Environ Pollut 156:567–582PubMedCrossRefGoogle Scholar
  24. Matyssek R, Wieser G, Ceulemans R, Rennenberg H, Pretzsch H, Haberer K, Löw M, Nunn AJ, Werner H, Wipfler P, Oßwald W, Nikolova P, Hanke DE, Kraigher H, Tausz M, Bahnweg G, Kitao M, Dieler J, Sandermann H, Herbinger K, Grebenc T, Blumenröther M, Deckmyn G, Grams TEE, Heerdt C, Leuchner M, Fabian P, Häberle K-H (2010) Enhanced ozone strongly reduces carbon sink strength of adult beech (Fagus sylvatica)—resume from the free-air fumigation study at Kranzberg Forest. Environ Pollut 158:2527–2532PubMedCrossRefGoogle Scholar
  25. McNaughton KG, van den Hurk BJJM (1995) A ‘Lagrangian’ revision of the resistors in the two-layer model for calculating the energy budget of a plant canopy. Bound-Lay Meteorol 74:261–288CrossRefGoogle Scholar
  26. Mills G, Pleijel H, Braun S, Büker P, Bermejo V, Calvo E, Danielsson H, Emberson L, Gonzáles Fernández I, Grünhage L, Harmens H, Hayes F, Karlsson P-E, Simpson D (2011) New stomatal flux-based critical levels for ozone effects on vegetation. Atmos Environ 45:5064–5068CrossRefGoogle Scholar
  27. Musselman RC, Massman WJ (1999) Ozone flux to vegetation and its relationship to plant response and ambient air quality standards. Atmos Environ 33:65–73CrossRefGoogle Scholar
  28. Musselman RC, Lefohn AS, Massman WJ, Heath RL (2006) A critical review and analysis of the use of exposure- and flux-based ozone indices for predicting vegetation effects. Atmos Environ 40:1869–1888CrossRefGoogle Scholar
  29. Nunn AJ, Reiter IM, Häberle K-H, Werner H, Langebartels C, Sandermann H, Heerdt C, Fabian P, Matyssek R (2002) “Free-air” ozone canopy fumigation in an old-growth mixed forest: concept and observations in beech. Phyton (Austria) Special issue: Global change 42: 105–119Google Scholar
  30. Nunn AJ, Kozovits AR, Reiter IM, Heerdt C, Leuchner M, Lütz C, Liu X, Löw M, Winkler JB, Grams TEE, Häberle K-H, Werner H, Fabian P, Rennenberg H, Matyssek R (2005) Comparison of ozone uptake and sensitivity between a phytotron study with young beech and a field experiment with adult beech (Fagus sylvatica). Environ Pollut 137:494–506PubMedCrossRefGoogle Scholar
  31. Nunn AJ, Wieser G, Metzger U, Löw M, Wipfler P, Häberle K-H, Matyssek R (2007) Exemplifying whole-plant ozone uptake in adult forest trees of contrasting species and site conditions. Environ Pollut 146:629–639PubMedCrossRefGoogle Scholar
  32. Nunn AJ, Cieslik S, Metzger U, Wieser G, Matyssek R (2010) Combining sap flow and eddy covariance approaches to derive stomatal and non-stomatal O3 fluxes in a forest stand. Environ Pollut 158:2014–2022PubMedCrossRefGoogle Scholar
  33. Paoletti E, Manning WJ (2007) Toward a biologically significant and usable standard for ozone that will also protect plants. Environ Pollut 150:85–95PubMedCrossRefGoogle Scholar
  34. Pretzsch H, Dieler J, Matyssek R, Wipfler P (2010) Tree and stand growth of mature Norway spruce and European beech under long-term ozone fumigation. Environ Pollut 158:1061–1070PubMedCrossRefGoogle Scholar
  35. Stewart JB (1988) Modelling surface conductance of pine forest. Agr Forest Meteorol 43:19–35CrossRefGoogle Scholar
  36. Uddling J, Günthardt-Goerg MS, Matyssek R, Oksanen E, Pleijel H, Selldén G, Karlsson PE (2004) Biomass reduction of juvenile birch is more strongly related to stomatal uptake of ozone than to indices based on external exposure. Atmos Environ 38:4709–4719CrossRefGoogle Scholar
  37. Werner H, Fabian P (2002) Free-air fumigation of mature trees. A novel system for the controlled ozone enrichment in grown-up beech and spruce canopies. Environ Sci Pollut R 9:117–121CrossRefGoogle Scholar
  38. Wieser G, Matyssek R, Köstner B, Oberhuber W (2003) Quantifying ozone uptake at the canopy level of spruce, pine and larch trees at the alpine timberline: an approach based on sap flow measurement. Environ Pollut 126:5–8PubMedCrossRefGoogle Scholar
  39. Wieser G, Matyssek R, Götz B, Grünhage L (2012) Branch cuvettes as means of ozone risk assessment in adult forest tree crowns: combining experimental and modeling capacities. Trees. doi:10.1007/s00468-012-0715-6

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • Ludger Grünhage
    • 1
  • Rainer Matyssek
    • 2
  • Karl-Heinz Häberle
    • 2
  • Gerhard Wieser
    • 3
  • Ursula Metzger
    • 2
  • Michael Leuchner
    • 4
  • Annette Menzel
    • 4
  • Jochen Dieler
    • 5
  • Hans Pretzsch
    • 5
  • Winfried Grimmeisen
    • 6
  • Lothar Zimmermann
    • 6
  • Stephan Raspe
    • 6
  1. 1.Department of Plant EcologyJustus-Liebig UniversityGiessenGermany
  2. 2.Ecophysiology of PlantsTechnische Universität MünchenFreisingGermany
  3. 3.Division of Alpine Timberline EcophysiologyFederal Research and Training Centre for Forests, Natural Hazards and LandscapeInnsbruckAustria
  4. 4.EcoclimatologyTechnische Universität MünchenFreisingGermany
  5. 5.Forest Growth and Yield ScienceTechnische Universität MünchenFreisingGermany
  6. 6.Bayerische Landesanstalt für Wald und ForstwirtschaftFreisingGermany

Personalised recommendations