Advertisement

Trees

, Volume 26, Issue 3, pp 1031–1044 | Cite as

Characteristics of Acacia mangium shoot apical meristems in natural and in vitro conditions in relation to heteroblasty

  • Clemence Hatt
  • François Mankessi
  • Jean-Baptiste Durand
  • Frédéric Boudon
  • Fabienne Montes
  • Marc Lartaud
  • Jean-Luc Verdeil
  • Olivier Monteuuis
Original Paper
  • 150 Downloads

Abstract

Morphological and histocytological characteristics of Acacia mangium shoot apical meristems (SAMs) were assessed in natural and in vitro conditions in relation to heteroblasty. In the natural environment, SAMs with a mature-phyllode morphology were much bigger, contained more cells with larger vacuolated area, or vacuome, and lower nucleoplasmic ratios than those from the juvenile type (Juv). In these latter, nuclei appeared more voluminous, evenly and lightly stained, with clearly distinguishable nucleolei and less abundant chromocenters. In vitro, where reversions from mature to juvenile morphological traits do occur unpredictably, heteroblasty was less obvious in the SAM characteristics examined. In vitro SAMs corresponding to the juvenile and mature types showed similarities with outdoor Juv SAMs, but could be distinguished from these latter by a much larger vacuome that might be induced by the culture conditions. These findings encourage pursuing the investigations at the chromatin and nucleolus level in SAM zones where heteroblasty-related differences have been detected.

Keywords

Ageing Development Histocytology Juvenile Leaf morphology Mature Phase change Phyllode Rejuvenation SAM 

Notes

Acknowledgments

The authors are indebted to ATP CIRAD “Méristèmes” for financial contribution to this study.

References

  1. Abramoff MD, Magelhaes PJ, Ram SJ (2004) Image processing with ImageJ. Biophoton Int 11:36–42Google Scholar
  2. Bártová E, Horáková AH, Uhlířová R, Raška I, Galiová G, Orlova D, Kozubek S (2010) Structure and epigenetics of nucleoli in comparison with non-nucleolar compartments. J Histochem Cytochem 58:391–403PubMedCrossRefGoogle Scholar
  3. Baurens FC, Nicolleau J, Legavre T, Verdeil JL, Monteuuis O (2004) Genomic DNA methylation of juvenile and mature Acacia mangium micropropagated in vitro with reference to leaf morphology as a phase change marker. Tree Physiol 24:401–407PubMedCrossRefGoogle Scholar
  4. Bertheau C, Salle A, Rossi J-P, Bankhead-Dronnet S, Pineau X, Roux-Morabito G, Lieutier F (2009) Colonisation of native and exotic conifers by indigenous bark beetles (Coleoptera:Scolytinae) in France. For Ecol Manag 258:1619–1628CrossRefGoogle Scholar
  5. Bon MC (1988) Nucleotide status and protein synthesis in vivo in the apices of juvenile and mature Sequoiadendron giganteum during budbreak. Physiol Plant 72:796–800CrossRefGoogle Scholar
  6. Borchert R (1976) The concept of juvenility in woody plants. Acta Hortic 56:57–69Google Scholar
  7. Brandstadter J, Rossbach C, Theres K (1994) The pattern of histone H4 expression in the tomato shoot apex changes during development. Planta 192:69–74PubMedGoogle Scholar
  8. Buffard-Morel J, Verdeil JL, Pannetier C (1992) Embryogenèse somatique du cocotier (Cocos nucifera L.) à partir d’explant foliaire: étude histologique. Can J Bot 70:735–741CrossRefGoogle Scholar
  9. Buvat R (1955) Le méristème floral de la tige. Année Biologique 31:596–656Google Scholar
  10. Cescatti A (1997) Modelling the radiative transfer in discontinuous canopies of asymmetric crown. I. model structure and algorithms. Ecol Model 101:263–274CrossRefGoogle Scholar
  11. Clowes FAL (1961) Apical meristems. Blackwell Scientific Publications, OxfordGoogle Scholar
  12. Darus HA (1993) Vegetative propagation. In: Awang K, Taylor D (eds) “Acacia mangium: growing and utilization”. Winrock International, FAO: Bangkok, Thailand, MPTS monograph series no 3, pp 59–74Google Scholar
  13. Doorenbos J (1965) Juvenile and adult phases in woody plants. Encycl Plant Physiol 15:1222–1235Google Scholar
  14. Esau K (1965) Plant anatomy. John Wiley & Sons, Inc., New YorkGoogle Scholar
  15. Fisher DB (1968) Protein staining of ribboned epon sections for light microscopy. Histochemie 16:92–96PubMedCrossRefGoogle Scholar
  16. Fouret Y, Arnaud Y, Larrieu C, Miginiac E (1986) Sequoia sempervirens as an in vitro rejuvenation model. New Zealand J For Sci 16:319–327CrossRefGoogle Scholar
  17. Fransz P (2008) Chromatin domains and function. In: Meier I (ed) “Functional Organization of the Plant Nucleus.”. Springer, New-York, pp 131–156Google Scholar
  18. George EF (1993) Plant propagation by tissue culture, Part 1 and 2. Exegetics Ltd., BasingstokeGoogle Scholar
  19. Gifford EM, Corson GE (1971) The shoot apex in seed plant. Bot Rev 37:143–229CrossRefGoogle Scholar
  20. Good P (2005) Chapter 3: testing hypotheses. In: Good P (ed) Permutation, parametric and bootstrap tests of hypotheses, 3rd edn. Springer, New York, pp 33–63Google Scholar
  21. Greenwood MS (1987) I. Rejuvenation of forest trees. Plant Growth Regul 6:1–12CrossRefGoogle Scholar
  22. Hackett WP (1983) Phase change and intra-clonal variability. HortScience 18:12–16Google Scholar
  23. Hackett WP (1985) Juvenility, maturation and rejuvenation in woody plants. Hortic Rev 7:109–155Google Scholar
  24. Hammatt N, Grant NJ (1993) Apparent rejuvenation of mature wild cherry (Prunus avium L.) during micropropagation. J Plant Physiol 141:341–346CrossRefGoogle Scholar
  25. Jones CS (1999) An essay on juvenility, phase change, and heteroblasty in seed plants. Int J Plant Sci 160:S105–S111PubMedCrossRefGoogle Scholar
  26. Kaplan SL (1980) Heteroblastic leaf development in Acacia. Morphological and morphogenetic implications. Cellule 73:137–203Google Scholar
  27. Leroy C, Heuret P (2008) Modelling changes in leaf shape prior to phyllode acquisition in Acacia mangium Willd. seedlings. Comptes Rendus Biologie 331:127–136CrossRefGoogle Scholar
  28. Mankessi F, Saya AR, Boudon F, Guedon Y, Montes F, Lartaud M, Verdeil JL, Monteuuis O (2010) Phase change-related variations of dome shape in Eucalyptus urophylla × Eucalyptus grandis shoot apical meristems. Trees 24:743–752CrossRefGoogle Scholar
  29. Mankessi F, Saya AR, Montes F, Lartaud M, Verdeil JL, Monteuuis O (2011) Histocytological characteristics of Eucalyptus urophylla × Eucalyptus grandis shoot apical meristems of different physiological ages. Trees 25:415–424CrossRefGoogle Scholar
  30. Martin RC, Asahina M, Liu PP, Kristof JR, Coppersmith JL, Pluskota WE, Bassel GW, Goloviznina NA, Nguyen TT, Martınez-Andujar C, Arun Kumar MB, Pupel P, Nonogaki H (2010) The microRNA156 and microRNA172 gene regulation cascades at post-germinative stages in Arabidopsis. Seed Sci Res 20:79–87CrossRefGoogle Scholar
  31. McKeown PC, Shaw PJ (2009) Chromatin: linking structure and function in the nucleolus. Chromosoma 118:11–23PubMedCrossRefGoogle Scholar
  32. McLachlan G, Peel D (2000) Chapter 6: assessing the number of components in mixture models. In: McLachlan G, Peel D (eds) Finite mixture models. Wiley, New York, pp 175–220CrossRefGoogle Scholar
  33. Medford JI (1992) Vegetative apical meristems. Plant Cell 4:1029–1039PubMedCrossRefGoogle Scholar
  34. Monteuuis O (1989) Analyses microscopiques de points végétatifs de Sequoiadendron giganteum jeunes et âgés durant le repos végétatif et lors du débourrement. Bulletin de la Société Botanique de France, Lettres Bot. 136:317–326Google Scholar
  35. Monteuuis O (2004a) In vitro micropropagation and rooting of Acacia mangium microshoots from juvenile and mature origins. In Vitro Cell Dev Biol Plant 40:102–107Google Scholar
  36. Monteuuis O (2004b) In vitro rooting of juvenile and mature Acacia mangium microcuttings with reference to leaf morphology as a phase change marker. Trees 18:77–82Google Scholar
  37. Monteuuis O, Gendraud M (1987) Nucleotide and nucleic acid status in shoot tips from juvenile and mature clones of Sequoiadendron giganteum during rest and growth phases. Tree Physiol 3:257–263PubMedGoogle Scholar
  38. Monteuuis O, Vallauri D, Poupard C, Chauvière M (1995) Rooting Acacia mangium cuttings of different physiological age with reference to leaf morphology as a phase change marker. Silvae Genetica 44:150–154Google Scholar
  39. Monteuuis O, Baurens FC, Goh DKS, Quimado M, Doulbeau S, Verdeil JL (2009) DNA methylation in Acacia mangium in vitro and ex-vitro buds, in relation to their within-shoot position, age and leaf morphology of the shoots. Silvae Genetica 58:287–292Google Scholar
  40. Monteuuis O, Lardet L, Montoro P, Berthouly M, Verdeil JL (2011) Somatic embryogenesis and phase change in trees. In: Park YS, Bonga JM, Park SY, Moon HK (eds) “Advances in somatic embryogenesis of trees and its applications for the future forests and plantations”. Proceedings of the IUFRO working party 2.09.02, August 19–21, 2010, Suwon, Republic of Korea, pp 25–33Google Scholar
  41. Owston PW (1969) The shoot apex in eastern white pine: its structure, seasonal development, and variation within the crown. Can J Bot 47:1181–1188CrossRefGoogle Scholar
  42. Owston PW, Molder M (1973) Bud development in western hemlock. I. Annual growth cycle of vegetative buds. Can J Bot 51:2223–2231CrossRefGoogle Scholar
  43. Parke RV (1959) Growth periodicity and the shoot tip of Abies concolor. Am J Bot 46:110–118CrossRefGoogle Scholar
  44. Passecker F (1947) Entwicklungsphasen und vegetative Vermehrung holziger Gewächse. Zbl. Ges. Forst- u. Holzw. 70:270–292Google Scholar
  45. Pierik RLM (1990) Rejuvenation and micropropagation. In: Nijkamp HJJ, Van Der Plas LHW, Van Aartrijk J (eds) Progress in plant cellular and molecular biology. Kluwer, Amsterdam, Netherlands, pp 91–101Google Scholar
  46. Poethig RS (1990) Phase change and the regulation of shoot morphogenesis in Plants. Science 16:923–930CrossRefGoogle Scholar
  47. Poethig RS (1997) Leaf morphogenesis in flowering plants. Plant Cell 9:1077–1087PubMedCrossRefGoogle Scholar
  48. Poethig RS (2003) Phase change and the regulation of developmental timing in plants. Science 301:334–336PubMedCrossRefGoogle Scholar
  49. Poupard C, Chauvière M, Monteuuis O (1994) Rooting Acacia mangium cuttings: effects of age, within-shoot position and auxin treatment. Silvae Genetica 43:226–231Google Scholar
  50. R Development Core Team (2008) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria, ISBN 3-900051-07-0. http://www.R-project.org
  51. Robbins WJ (1957) Physiological aspects of aging in plants. Am J Bot 44:289–294CrossRefGoogle Scholar
  52. Robinson LW, Wareing PF (1969) Experiments on the juvenile-adult phase change in some woody species. New Phytol 68:67–78CrossRefGoogle Scholar
  53. Romberger JA (1963) Meristems: growth and development in woody plants, U.S. Department of Agriculture, Forest Service, Technical Bulletin No. 1293Google Scholar
  54. Rufelds CW (1988) Acacia mangium, A. auriculiformis, and hybrid A. auriculiformis seedling morphology study. Forest Res. Centre, Sepilok, Sabah, East MalaysiaGoogle Scholar
  55. Salaj J, Schornagel MJ, Schmidt EDL, Schel JHN (1996) In situ histone H4 mRNA detection in shoot apical meristems of juvenile and adult Acacia mangium Willd. Acta Bot Neerl 45:575Google Scholar
  56. SAS (2000) SAS/STAT User’s Guide. Cary, NCGoogle Scholar
  57. Schaffalitzky de Muckadell M (1959) Investigations on aging of apical meristems in woody plants and its importance in silviculture. Kandrup and Wunsch’s Bogtrykkeri, København, pp 313–346Google Scholar
  58. Schüepp O (1966) Meristeme: Wachstum und Formbildung in den Teilungsgeweben höherer Pflanzen. Birkhäuser verlag, Basel and StuttgartGoogle Scholar
  59. Schwendiman J, Pannetier C, Michaux-Ferriere N (1988) Histology of somatic embryogenesis from leaf explants of the oil palm Elaeis guineensis. Ann Bot 62:43–52Google Scholar
  60. SciPy (2008) Scientific Tools for Python, SciPy Reference Guide, Enthought. http://www.scipy.org
  61. Sokal RR, Rohlf FJ (1995) Biometry. WH Freeman and Company, New YorkGoogle Scholar
  62. Tabachnick BG, Fidell LS (2007) Chapter 7 Multivariate Analysis of Variance and Covariance. In: Tabachnick BG, Fidell LS (eds) Using multivariate statistics, 5th edn. Pearson Education Inc./Allyn and Bacon, Boston, pp 243–310Google Scholar
  63. Tepper HB (1963) Dimensional and zonational variation in dormant shoot apices of Pinus ponderosa. Am J Bot 50:589–596CrossRefGoogle Scholar
  64. Valledor L, Hasbun R, Meijon M, Rodriguez JL, Santamaria E, Viejo M, Berdasco M, Feito I, Fraga MF, Canal MJ, Rodriguez R (2007) Involvement of DNA methylation in tree development and micropropagation. Plant Cell Tiss Organ Cult 91:75–86CrossRefGoogle Scholar
  65. Verdeil JL, Alemanno L, Niemenak N, Tranbarger TJ (2007) Pluripotent versus totipotent plant stem cells: dependence versus autonomy? Trends Plant Sci 12:245–252PubMedCrossRefGoogle Scholar
  66. Von Aderkas P, Bonga JM (2000) Influencing micropropagation and somatic embryogenesis by manipulation of phase change and culture environment. Tree Physiol 20:921–928CrossRefGoogle Scholar
  67. Wang JW, Park MY, Wang LJ, Koo Y, Chen XY, Weigel D, Poethig RS (2011) MiRNA control of vegetative phase change in trees. PLoS Genet 7:e1002012PubMedCrossRefGoogle Scholar
  68. Watelet-Gonod MC, Favre JM (1981) Miniaturisation et rajeunissement chez Dahlia variabilis (variété Télévision) cultivé in vitro. Annales des Sciences Naturelles Botaniques 13:51–67Google Scholar
  69. Yu H, Li JT (2007) Physiological comparisons of true leaves and phyllodes in Acacia mangium seedlings. Photosynthetica 45:312–316CrossRefGoogle Scholar
  70. Zotz G, Wilhelm K, Becker A (2011) Heteroblasty—a review. Bot Rev 77:109–151CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • Clemence Hatt
    • 1
    • 4
  • François Mankessi
    • 2
  • Jean-Baptiste Durand
    • 3
  • Frédéric Boudon
    • 3
  • Fabienne Montes
    • 1
  • Marc Lartaud
    • 1
  • Jean-Luc Verdeil
    • 1
  • Olivier Monteuuis
    • 4
  1. 1.CIRAD-BIOSUMR AGAP PHIV-MRIMontpellier Cedex 5France
  2. 2.CRDPIPointe-NoireCongo
  3. 3.CIRAD-BIOSUMR AGAP and INRIA, Virtual PlantsMontpellier Cedex 5France
  4. 4.CIRAD-BIOSUMR AGAPMontpellier Cedex 5France

Personalised recommendations