, Volume 26, Issue 3, pp 777–788

Climate sensitivity of radial growth in European beech (Fagus sylvatica L.) at different aspects in southwestern Germany

Original Paper


The climate sensitivity of radial growth in European beech (Fagussylvatica L.) was analyzed within a narrow valley in the Swabian Alb (southwestern Germany). We collected stem disks from three aspects (NE, NW and SW) of trees belonging to different social classes. Common climatic factors limiting growth across the valley were identified using a principal component analysis (PCA). Further, we performed hierarchical cluster analysis (HCA), redundancy analysis (RDA) and bootstrapped correlation analysis to reveal differences in chronologies and climate-growth relationships between aspect and social class. Climatic variables considered in our analyses were monthly and seasonal data on temperature and precipitation, as well as a self-calibrating Palmer drought severity index (sc-PDSI). We identified drought in the period June–August as the most prominent factor limiting growth across the valley. Dominant and co-dominant trees at the NW and SW aspects were found to be particularly drought sensitive, whereas intermediate trees were less susceptible to drought. Underlying causes of established climate–growth relationships are discussed in the context of drought susceptibility, tree-size modulation and tree physiological processes.


Radial growth Redundancy analysis (RDA) Climate change Self-calibrating Palmer drought severity index Tree size 


  1. Ammer C, Albrecht L, Borchert H, Brosinger F, Dittmar C, Elling W, Ewald J, Felbermeier B, Von Gilsa H, Huss J, Kenk G, Kölling C, Kohnle U, Meyer P, Mosandl R, Moosmayer HU, Palmer S, Reif A, Rehfuess KE, Stimm B et al (2005) Zur Zukunft der Buche (Fagus sylvatica L.) in Mitteleuropa: kritische Anmerkungen zu einem Beitrag von Rennenberg et al. (2004). Allg Forst Jagdztg 176(4):60–67Google Scholar
  2. Aranda I, Gil L, Pardos JA (2000) Water relations and gas exchange in Fagus sylvatica L. and Quercus petraea (Mattuschka) Liebl. in a mixed stand at their southern limit of distribution in Europe. Trees Struct Func 14(6):344–352CrossRefGoogle Scholar
  3. Aussenac G (2000) Interactions between forest stands and microclimate: Ecophysiological aspects and consequences for silviculture. Ann For Sci 57(3):287–301CrossRefGoogle Scholar
  4. Barbaroux C, Bréda N (2002) Contrasting distribution and seasonal dynamics of carbohydrate reserves in stem wood of adult ring-porous sessile oak and diffuse-porous beech trees. Tree Physiol 22(17):1201–1210PubMedCrossRefGoogle Scholar
  5. Becker M, Landmann G, Lévy G (1989) Silver fir decline in the Vosges Mountains (France): role of climate and silviculture. Water Air Soil Pollut 48(1–2):77–86Google Scholar
  6. Becker M, Nieminen T, Gérémima F (1994) Short-term variations and long-term changes in oak productivity in northeastern France. The role of climate and atmospheric CO2. Ann For Sci 51:477–492CrossRefGoogle Scholar
  7. Biondi F, Waikul K (2004) DENDROCLIM2002: A C++ program for statistical calibration of climate signals in tree-ring chronologies. Comput Geosci 30(3):303–311CrossRefGoogle Scholar
  8. Bontemps J-D, Hervé J-C, Dhôte J-F (2009) Long-term changes in forest productivity: a consistent assessment in even-aged stands. For Sci 55:549–564Google Scholar
  9. Bontemps J-D, Hervé J-C, Dhôte J-F (2010) Dominant radial and height growth reveal comparable historical variations for common beech in north-eastern France. For Ecol Manag 258(8):1455–1463CrossRefGoogle Scholar
  10. Bouriaud O, Bréda N, Moguédec G, Nepveu G (2004) Modelling variability of wood density in beech as affected by ring age, radial growth and climate. Trees Struct Func 18(3):264–276CrossRefGoogle Scholar
  11. Cescatti A, Piutti E (1998) Silvicultural alternatives, competition regime and sensitivity to climate in a European beech forest. For Ecol Manag 102(2–3):213–223CrossRefGoogle Scholar
  12. Charru M, Seynave I, Morneau F, Bontemps J-D (2010) Recent changes in forest productivity: an analysis of national forest inventory data for common beech (Fagus sylvatica L.) in north-eastern France. For Ecol Manag 260(5):864–874CrossRefGoogle Scholar
  13. Cherubini P, Dobbertin M, Innes JL (1998) Potential sampling bias in long-term forest growth trends reconstructed from tree rings: a case study from the Italian Alps. For Ecol Manag 109(1–3):103–118CrossRefGoogle Scholar
  14. Christensen JH, Hewitson B, Busuoic A, Chen A, Gao X, Held R, Jones R, Kolli RK, Kwon W-T, Laprise R, Magana Rueda V, Mearns L, Menéndez CG, Räisänen J, Rinke A, Sarr A, Whetton P (2007) Regional climate projections. In: Solomon S, Qin D, Manning M et al (eds) Climate change 2007: the physical science basis. Contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, CambridgeGoogle Scholar
  15. Ciais P, Reichstein M, Viovy N, Granier A, Ogée J, Allard V, Aubinet M, Buchmann N, Bernhofer C, Carrara A, Chevallier F, De Noblet N, Friend AD, Friedlingstein P, Grünwald T, Heinesch B, Keronen P, Knohl A, Krinner G, Loustau D, Manca G, Matteucci G, Miglietta F, Ourcival JM, Papale D, Pilegaard K, Rambal S, Seufert G, Soussana JF, Sanz MJ, Schulze ED, Vesala T, Valentini R (2005) Europe-wide reduction in primary productivity caused by the heat and drought in 2003. Nature 437(7058):529–533PubMedCrossRefGoogle Scholar
  16. Cook ER (1985) A time-series analysis approach to tree-ring standardisation. University of Arizona, USAGoogle Scholar
  17. Cook ER, Peters K (1981) The smoothing spline: a new approach to standardizing forest interior tree-ring width series for dendroclimatic studies. Tree Ring Bull 41:45–53Google Scholar
  18. De Luis M, Novak K, Čufar K, Raventós J (2009) Size mediated climate-growth relationships in Pinus halepensis and Pinus pinea. Trees Struct Func 23(5):1065–1073CrossRefGoogle Scholar
  19. Dittmar C, Elling W (1999) Radial growth of Norway spruce and European beech in relation to weather and altitude. Forstwiss Centralbl 118(4):251–270CrossRefGoogle Scholar
  20. Dittmar C, Zech W, Elling W (2003) Growth variations of common beech (Fagus sylvatica L.) under different climatic and environmental conditions in Europe: a dendroecological study. For Ecol Manag 173(1–3):63–78CrossRefGoogle Scholar
  21. Drobyshev I, Övergaard R, Saygin I, Niklasson M, Hickler T, Karlsson M, Sykes MT (2010) Masting behavior and dendrochronology of European beech (Fagus sylvatica L.) in southern Sweden. For Ecol Manag 259(11):2160–2171CrossRefGoogle Scholar
  22. Epron D, Dreyer E (1990) Stomatal and non stomatal limitation of photosynthesis by leaf water deficits in three oak species: a comparison of gas exchange and chlorophyll a fluorescence data. Ann For Sci 47(5):435–450CrossRefGoogle Scholar
  23. Friedrichs DA, Trouet V, Büntgen U, Frank DC, Esper J, Neuwirth B, Löffler J (2009) Species-specific climate sensitivity of tree growth in Central-West Germany. Trees Struct Func 23(4):729–739CrossRefGoogle Scholar
  24. Fritts HC (1976) Tree rings and climate. Academic Press, LondonGoogle Scholar
  25. García-Suárez AM, Butler CJ, Baillie MGL (2009) Climate signal in tree-ring chronologies in a temperate climate: a multi-species approach. Dendrochronologia 27(3):183–198CrossRefGoogle Scholar
  26. Geßler A, Schrempp S, Matzarakis A, Mayer H, Rennenberg H, Adams MA (2001) Radiation modifies the effect of water availability on the carbon isotope composition of beech (Fagus sylvatica). New Phytol 150(3):653–664CrossRefGoogle Scholar
  27. Geßler A, Keitel C, Kreuzwieser J, Matyssek R, Seiler W, Rennenberg H (2007) Potential risks for European beech (Fagus sylvatica L.) in a changing climate. Trees Struct Func 21(1):1–11CrossRefGoogle Scholar
  28. Gómez-Aparicio L, García-Valdés R, Ruíz-Benito P, Zavala MA (2011) Disentangling the relative importance of climate, size and competition on tree growth in Iberian forests: implications for forest management under global change. Glob Change Biol 17(7):2400–2414CrossRefGoogle Scholar
  29. GreenLeaf-website (2011) Website GreenLeaf Project. Accessed 11-3-2011
  30. Grundmann BM, Bonn S, Roloff A (2008) Cross-dating of highly sensitive common beech (Fagus sylvatica L.) tree-ring series with numerous missing rings. Dendrochronologia 26(2):109–113CrossRefGoogle Scholar
  31. Hauser S (2003) Dynamik hochaufgelöster radialer Schaftveränderungen und des Dickenwachstums bei Buchen (Fagus sylvatica L.) der Schwäbischen Alb unter dem Einfluss von Witterung und Bewirtschaftung. University of Freiburg, GermanyGoogle Scholar
  32. Hildebrand E, Augustin S, Schack-Kirchner H (1998) Bodenkunliche Charakterisierung der Kernflächen. In: Buchendominierte Laubwälder unter dem Einfluß von Klima und Bewirtschaftung: Ökologische, waldbauliche und sozialwissenschaftliche Analysen - Vorcharakterisierung der Untersuchungsflächen. FreiburgGoogle Scholar
  33. Holst T, Rost J, Mayer H (2005) Net radiation balance for two forested slopes on opposite sides of a valley. Int J Biometeorol 49(5):275–284PubMedCrossRefGoogle Scholar
  34. Jump AS, Hunt JM, Peñuelas J (2006) Rapid climate change-related growth decline at the southern range edge of Fagus sylvatica. Glob Change Biol 12(11):2163–2174CrossRefGoogle Scholar
  35. Kahle H (2006) Impact of the drought in 2003 on intra- and inter-annual radial growth of beech and spruce along an altitudinal gradient in the Black Forest, Germany. TRACE-tree rings in archaeology, climatology and ecology. In: Proceedings of the DENDROSYMPOSIUM 2005 in Fribourg, Switzerland, vol 4. Schriften des Forschungszentrums Jülich-Reihe UmweltGoogle Scholar
  36. Kölling C, Walentowski H, Borchert H (2005) Die Buche in Mitteleuropa: eine Waldbaumart mit grandioser Vergangenheit und sicherer Zukunft. AFZ-Der Wald 60:696–701Google Scholar
  37. Kozlowski TT, Pallardy SG (1997) Growth control in woody plants. Academic Press, San DiegoGoogle Scholar
  38. Kraft G (1884) Zur Lehre von den Durchforstungen. Schlagstellungen und Lichtungshieben, KlindworthGoogle Scholar
  39. Lachaud S, Bonnemain J-L (1981) Xylogenèse chez les Dicotylédones arborescentes. I. Modalités de la remise en activité du cambium et de la xylogenèse chez les Hêtres et les Chênes âgés. Can J Bot 59(7):1222–1230CrossRefGoogle Scholar
  40. Lebourgeois F (2007) Climatic signal in annual growth variation of silver fir (Abies alba Mill.) and spruce (Picea abies Karst.) from the French permanent plot network (RENECOFOR). Ann For Sci 64(3):333–343CrossRefGoogle Scholar
  41. Lebourgeois F, Bréda N, Ulrich E, Granier A (2005) Climate-tree-growth relationships of European beech (Fagus sylvatica L.) in the French permanent plot network (RENECOFOR). Trees Struct Func 19(4):385–401CrossRefGoogle Scholar
  42. Legendre P, Legendre L (1998) Numerical ecology. Developments in environmental modelling. Elsevier, AmsterdamGoogle Scholar
  43. Lemoine D, Granier A, Cochard H (1999) Mechanism of freeze-induced embolism in Fagus sylvatica L. Trees Struct Func 13(4):206–210Google Scholar
  44. Lepš J, Šmilauer P (2003) Multivariate analysis of ecological data using CANOCO. Cambridge University Press, CambridgeGoogle Scholar
  45. Matzarakis A, Mayer H, Schindler D, Fritsch J (2000) Simulation des Wasserhaushalts eines Buchenwaldes mit dem forstlichen Wasserhaushaltsmodell WBS3. Ber Meteor Inst Univ Freiburg, vol. 5. Meteorological Institute, University of Freiburg, Freiburg, pp 137–146Google Scholar
  46. Mayer H, Holst T, Schindler D (2002) Microclimate within beech stands: part I: photosynthetically active radiation. Forstwiss Centralbl 121(6):301–321CrossRefGoogle Scholar
  47. Mérian P, Lebourgeois F (2011) Size-mediated climate-growth relationships in temperate forests: a multi-species analysis. For Ecol Manag 261(8):1382–1391CrossRefGoogle Scholar
  48. Mund M, Kutsch WL, Wirth C, Kahl T, Knohl A, Skomarkova MV, Schulze ED (2010) The influence of climate and fructification on the inter-annual variability of stem growth and net primary productivity in an old-growth, mixed beech forest. Tree Physiol 30(6):689–704PubMedCrossRefGoogle Scholar
  49. Neuwirth B, Schweingruber FH, Winiger M (2007) Spatial patterns of central European pointer years from 1901 to 1971. Dendrochronologia 24(2–3):79–89CrossRefGoogle Scholar
  50. Orwig DA, Abrams MD (1997) Variation in radial growth responses to drought among species, site, and canopy strata. Trees Struct Func 11(8):474–484CrossRefGoogle Scholar
  51. Paar U, Guckland A, Dammann I, Albrecht M, Eichhorn J (2011) Häufigkeit und Intensität der Fruktifikation der Buche. AFZ-Der Wald (6):26–29Google Scholar
  52. Palmer W (1965) Meteorological drought. Weather bureau paper, vol 45. Office of Climatology, US Weather Bureau, Washington, DCGoogle Scholar
  53. Peñuelas J, Boada M (2003) A global change-induced biome shift in the Montseny mountains (NE Spain). Glob Change Biol 9(2):131–140CrossRefGoogle Scholar
  54. Peñuelas J, Ogaya R, Boada M, Jump AS (2007) Migration, invasion and decline: changes in recruitment and forest structure in a warming-linked shift of European beech forest in Catalonia (NE Spain). Ecography 30(6):829–837CrossRefGoogle Scholar
  55. Piovesan G, Adams JM (2001) Masting behaviour in beech: linking reproduction and climatic variation. Can J Bot 79(9):1039–1047Google Scholar
  56. Piovesan G, Biondi F, Di Filippo A, Alessandrini A, Maugeri M (2008) Drought-driven growth reduction in old beech (Fagus sylvatica L.) forests of the central Apennines, Italy. Glob Change Biol 14(6):1265–1281CrossRefGoogle Scholar
  57. Piutti E, Cescatti A (1997) A quantitative analysis of the interactions between climatic response and intraspecific competition in European beech. Can J For Res 27(3):277–284CrossRefGoogle Scholar
  58. Raftoyannis Y, Radoglou K (2002) Physiological responses of beech and sessile oak in a natural mixed stand during a dry summer. Ann Bot 89(6):723–730PubMedCrossRefGoogle Scholar
  59. Rennenberg H, Seiler W, Matyssek R, Geßler A, Kreuzwieser J (2004) Die Buche (Fagus sylvatica L.): ein Waldbaum ohne Zukunft im südlichen Mitteleuropa? Allg Forst Jagdztg 175(10/11):210–224Google Scholar
  60. Rolland C, Desplanque C, Michalet R, Schweingruber FH (2000) Extreme tree rings in spruce (Picea abies [L.] Karst.) and fir (Abies alba Mill.) stands in relation to climate, site, and space in the southern French and Italian Alps. Arct Antarct Alp Res 32(1):1–13CrossRefGoogle Scholar
  61. Saurer M, Borella S, Schweingruber F, Siegwolf R (1997) Stable carbon isotopes in tree rings of beech: climatic versus site-related influences. Trees Struct Func 11(5):291–297CrossRefGoogle Scholar
  62. Scharnweber T, Manthey M, Criegee C, Bauwe A, Schröder C, Wilmking M (2011) Drought matters—declining precipitation influences growth of Fagus sylvatica L. and Quercus robur L. in north-eastern Germany. For Ecol Manag 262(6):947–961CrossRefGoogle Scholar
  63. Schmitt U, Möller R, Eckstein D (2000) Seasonal wood formation dynamics of beech (Fagus sylvatica L.) and black locust (Robinia pseudoacacia L.) as determined by the ‘‘pinning’’ technique. J Appl Bot 74:10–16Google Scholar
  64. Schweingruber FH (1996) Tree rings and environment dendroecology. Haupt Verlag, BernGoogle Scholar
  65. Skomarkova M, Vaganov E, Mund M, Knohl A, Linke P, Boerner A, Schulze ED (2006) Inter-annual and seasonal variability of radial growth, wood density and carbon isotope ratios in tree rings of beech (Fagus sylvatica) growing in Germany and Italy. Trees Struct Func 20(5):571–586CrossRefGoogle Scholar
  66. Spiecker H, Kahle H, Hauser S (2001) Klima und Witterung als Einflußfaktoren für das Baumwachstum in Laubwäldern: Retrospektiven Analysen und Monitoring. In: Rennenberg H (ed) Buchendominierte Laubwälder unter dem Einfluß von Klima und Bewirtschaftung: Ökologische, waldbauliche und sozialwissenschaftliche Analysen - Vorcharakterisierung der Untersuchungsflächen; Abschlußbericht des SFB 443. Eigenverlag der Universität Freiburg, Freiburg, pp 307–333Google Scholar
  67. Střelcová K, Matejka F, Mindáš J (2002) Estimation of beech tree transpiration in relation to their social status in forest stand. J For Sci (Prague) 48(3):130–140Google Scholar
  68. Tardif J, Camarero JJ, Ribas M, Gutiérrez E (2003) Spatiotemporal variability in tree growth in the Central Pyrenees: climatic and site influences. Ecol Monogr 73(2):241–257CrossRefGoogle Scholar
  69. ter Braak CJF (1994) Canonical community ordination. Part I: basic theory and linear methods. Ecoscience 1(2):127–140Google Scholar
  70. ter Braak CJF, Šmilauer P (2002) CANOCO reference manual and CanoDraw for Windows user’s guide: software for canonical community ordination (version 4.5). Microcomputer Power, IthacaGoogle Scholar
  71. van der Schrier G, Briffa KR, Jones PD, Osborn TJ (2006) Summer moisture variability across Europe. J Climate 19(12):2818–2834CrossRefGoogle Scholar
  72. van der Werf GW, Sass-Klaassen UGW, Mohren GMJ (2007) The impact of the 2003 summer drought on the intra-annual growth pattern of beech (Fagus sylvatica L.) and oak (Quercus robur L.) on a dry site in the Netherlands. Dendrochronologia 25(2):103–112CrossRefGoogle Scholar
  73. Ward JH (1963) Hierarchical grouping to optimize an objective function. J Am Stat Assoc 58(301):236–244Google Scholar
  74. WebWerdis (2011) German weather serivce (DWD): web-based weather request and distribution system.
  75. Wells N, Goddard S, Hayes MJ (2004) A self-calibrating Palmer drought severity index. J Climate 17:2335–2351CrossRefGoogle Scholar
  76. Wigley TML, Briffa KR, Jones PD (1984) On the average value of correlated time series, with applications in dendroclimatology and hydrometeorology. J Clim Appl Meteorol 23(2):201–213CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  1. 1.Institute for Forest GrowthUniversity of FreiburgFreiburgGermany

Personalised recommendations