Trees

, Volume 26, Issue 3, pp 715–729 | Cite as

Instability of climate signal in tree-ring width in Mediterranean mountains: a multi-species analysis

  • F. Lebourgeois
  • P. Mérian
  • F. Courdier
  • J. Ladier
  • P. Dreyfus
Original Paper

Abstract

Temporal instability of climate signal in tree-ring width of the five dominant species (Pinus nigra, P. sylvestris, P. uncinata, Abies alba, Fagus sylvatica) growing under Mediterranean mountainous climate was studied over the last century (1910–2004). To disentangle the tree–climate–site complex, the effects of both soil water availability (SWA) (dry, mesic and humid sites) and altitude (from 430 to 1,690 m) were investigated on the response patterns. Responses to climate were analysed using bootstrapped correlation coefficients from 17 ring-width chronologies built from 293 trees sampled in 64 stands in South-Eastern France. Temporal analyses were performed considering forty-six 50-years intervals (from 1910–1959 to 1955–2004). May–June drought was the primary limiting factor. For P. sylvestris, summer precipitation also played a key role. F. sylvatica was the less responding species with no clear common pattern. Low SWA led to an increasing correlation with precipitation in May for P. nigra and A. alba. Precipitation from May to August prevailed on the driest conditions for P. sylvestris. Correlation analyses suggested that warm autumn or winter enhanced growth, except for F. sylvatica. For P. nigra, the importance of April temperature increased with increasing altitude. Temporal analyses revealed a stability of sensitivity for the highest contexts (P. uncinata and F. sylvatica). At lower altitudes, the correlation with minimum temperature in April increased while temperature more often exceeded the threshold of 0°C over the last decades. For precipitation, a decrease in the strength of correlation was observed without close relationships with local xericity.

Keywords

Climate change Dendroecology Moving correlations Divergence Pinus Abies Fagus 

Notes

Acknowledgments

We would like to express our gratitude to the persons who contributed to this project and more particularly to a technical team of INRA-URFM (Avignon) led by Nicolas Mariotte, for stand measurements, tree coring and soil descriptions. We also thank Romain Vepierre for his helpful technical assistance during the tree-ring width measurements, and Vincent Perez for the map presented in the Figure 1. Thanks are also due to the Research and Development team, the Agencies and the local officers of the French National Forest Service (ONF) for help in choosing the stands and for allowing us to core the trees. This study was funded by the French Public Interest Group on Forest Ecosystems (GIP ECOFOR).

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

468_2011_638_MOESM1_ESM.eps (1.2 mb)
Online Resource 1 Comparison of monthly climatic data extracted from the high-resolution European grids (15x15 km) (Tyndall) for precipitation in May (mm) and minimum temperature in April (Tmin °C). Ty(1) = Tyndall data extracted near Ventoux (see Figure 1 for location); Ty(2) = Moustier; Ty(3) = Saint-Auban; Ty(4) = Comps-sur-Artuby (EPS 1,242 kb)

References

  1. Allen HD (2003) Response of past and present Mediterranean ecosystems to environmental change. Prog Phys Geogr 27:359–377CrossRefGoogle Scholar
  2. Allen CD, Macalady AK, Chenchouni H, Bachelet D, McDowell N, Vennetier M, Kitzberger T, Rigling A, Breshears DD, Hogg EH, Gonzalez P, Fensham R, Zhang Z, Castro J, Demidova N, Lim JH, Allard G, Running SW, Semerci A, Cobb N (2010) A global overview of drought and heat-induced tree mortality reveals emerging climate change risks for forests. For Ecol Manag 259:660–684CrossRefGoogle Scholar
  3. Andreu L, Gutierrez E, Macias M, Ribas M, Bosch O, Camarero JJ (2007) Climate increases regional tree growth variability in Iberian pine forests. Glob Change Biol 13:804–815Google Scholar
  4. Andreu-Hayles L, Planells O, Gutiérrez E, Muntan E, Helle G, Anchukaitis KJ, Schlesers G (2011) Long tree ring chronologies reveal 20th century increases in water-use efficiency but no enhancement of tree growth at five Iberian pine forests. Glob Change Biol 17:2095–2112CrossRefGoogle Scholar
  5. Aranda I, Gil L, Pardos J (1996) Seasonal water relations of three broadleaved species (Fagus sylvatica L, Quercus petraea (Mattuschka) Liebl and Quercus pyrenaica Willd) in a mixed stand in the centre of the Iberian Peninsula. For Ecol Manag 84:219–229CrossRefGoogle Scholar
  6. Aussenac G (2002) Ecology and ecophysiology of circum-Mediterranea firs in the context of climate change. Ann For Sci 59:823–832CrossRefGoogle Scholar
  7. Bagnouls F, Gaussens H (1953) Saison sèche et indice xérothermique. Bull Soc Hist Nat de Toulouse 88:193–240Google Scholar
  8. Becker M (1989) The role of climate on present and past vitality of silver fir forests in the Vosges mountains of northeastern France. Can J For Res 19:1110–1117CrossRefGoogle Scholar
  9. Bert D (1993) Impact of ecological factors climatic stresses and pollution on growth and health of silver fir (Abies alba Mill) in the Jura mountains: an ecological and dendrochronological study. Acta Oecol 14:229–246Google Scholar
  10. Biondi F, Waikul K (2004) Dendroclim2002: a c++ program for statistical calibration of climate signals in tree ring chronologies. Comput Geosci 30:303–311CrossRefGoogle Scholar
  11. Bouriaud O, Popa I (2009) Comparative dendroclimatic study of Scots pine, Norway spruce, and silver fir in the Vrancea Range, Eastern Carpathian Mountains. Trees 23:95–106CrossRefGoogle Scholar
  12. Briffa KR, Schweingruber FH, Jones PD, Osborn TJ, Shiyatov SG, Vaganov EA (1998) Reduced sensitivity of recent tree-growth to temperature at high northern latitudes. Nature 391:678–682CrossRefGoogle Scholar
  13. Büntgen U, Frank D, Wilson R, Carrer M, Urbinati C (2008) Testing for tree-ring divergence in the European Alps. Glob Change Biol 14:2443–2453CrossRefGoogle Scholar
  14. Cailleret M, Davi H (2011) Effects of climate on diameter growth of co-occurring Fagus sylvatica and Abies alba along an altitudinal gradient. Trees 25:265–276CrossRefGoogle Scholar
  15. Camarero JJ, Guerrerocampo J, Gutierrez E (1998) Tree-ring growth and structure of Pinus uncinata and Pinus sylvestris in the Central Spanish Pyrenees. Arctic and Alpine Res 30:1–10CrossRefGoogle Scholar
  16. Carrer M, Urbinati C (2006) Long-term change in the sensitivity of tree-ring growth to climate forcing in Larix decidua. New Phytol 170:861–871PubMedCrossRefGoogle Scholar
  17. Carrer M, Nola P, Motta R, Urbinati C (2010) Contrasting tree-ring growth to climate responses of Abies alba toward the southern limit of its distribution area. Oikos 119:1515–1525CrossRefGoogle Scholar
  18. Cook ER, Peters K (1981) The smoothing spline: a new approach to standardizing forest interior tree-ring width series for dendroclimatic studies. Tree Ring Bull 41:45–53Google Scholar
  19. Cruiziat P, Cochard H, Améglio T (2002) Hydraulic architecture of trees: main concepts and results. Ann For Sci 59:723–752CrossRefGoogle Scholar
  20. D’Arrigo R, Wilson R, Liepert B, Cherubini P (2008) On the ‘Divergence Problem’ in Northern Forests: a review of the tree-ring evidence and possible causes. Glob Planet Change 60:289–305CrossRefGoogle Scholar
  21. Delpierre N, Soudani K, Francois C, Kostner B, Pontailler JY, Nikinmaa E, Misson L, Aubinet M, Bernhofer C, Granier A, Grunwald T, Heinesch B, Longdoz B, Ourcival JM, Rambal S, Vesala T, Dufrêne E (2009) Exceptional carbon uptake in European forests during the warm spring of 2007: a data-model analysis. Glob Change Biol 15:1455–1474CrossRefGoogle Scholar
  22. Desplanque C, Rolland C, Michalet R (1998) Dendroécologie comparée du sapin blanc (Abies alba) et de l’épicea commun (Picea abies) dans une vallée alpine de France. Can J For Res 28:737–748Google Scholar
  23. Dittmar C, Zech W, Elling W (2003) Growth variations of Common beech (Fagus sylvatica L.) under different climatic and environmental conditions in Europe—a dendroecological study. For Ecol Manag 173:63–78CrossRefGoogle Scholar
  24. Dobbertin M, Mayer P, Wohlgemuth T, Feldmeyer-Christe E, Graf U, Zimmermann NE, Rigling A (2005) The decline of Pinus sylvestris L. forests in the swiss Rhone Valley—a result of drought stress? Phyton Ann Rei Bot 45:153–156Google Scholar
  25. Dreyfus P (2008) Dynamiques du Sapin, du Hêtre et des pins dans l’arrière-pays méditerranéen: de la modélisation à l’aide à la gestion. Rev For Fr 60:233–249Google Scholar
  26. Dreyfus P, Courdier F, Bruno E, Ladier J (2007) Estimation du potentiel stationnel en peuplements mélangés, irréguliers: effets combinés du milieu, de la compétition et de la sylviculture. GIP ECOFOR, Programme de recherche «Typologie des stations forestières» , Scientific report, French National Institute for Agronomical Research, Mediterranean Forest Research UnitGoogle Scholar
  27. Fischer C, Holl W (1991) Food reserves of Scots pine (Pinus sylvestris L.). 1. Seasonal changes in the carbohydrate and fat reserves of pine needles. Trees 5:187–195CrossRefGoogle Scholar
  28. Fritts HC (1976) Tree-ring and climate. Academic Press, New YorkGoogle Scholar
  29. Gaucherel C, Guiot J, Misson L (2008) Changes of the potential distribution area of French Mediterranean forests under global warming. Biogeosciences 5:1493–1504CrossRefGoogle Scholar
  30. Giorgi F, Lionello P (2008) Climate change projections for the Mediterranean region. Glob Planet Change 63:90–104CrossRefGoogle Scholar
  31. Goubanova K, Li L (2007) Extremes in temperature and precipitation around the Mediterranean basin in an ensemble of future climate scenario simulations. Glob Planet Change 57:27–42CrossRefGoogle Scholar
  32. Gruber A, Zimmermann J, Wieser G, Oberhuber W (2009) Effects of climate variables on intra-annual stem radial increment in Pinus cembra (L.) along the alpine treeline ecotone. Ann For Sci 66. doi: 10.1051/forest/2009038
  33. Gruber A, Strobl S, Veit B, Oberhuber W (2010) Impact of drought on the temporal dynamics of wood formation in Pinus sylvestris. Tree Physiol 30:490–501PubMedCrossRefGoogle Scholar
  34. Guehl JM (1985) Etude comparée des potentialités hivernales d’assimilation carbonée de trois conifères de la zone tempérée (Pseudotsuga menziesii Mirb, Abies alba Mill et Picea excelsa Link). Ann For Sci 42:23–38CrossRefGoogle Scholar
  35. Guiot J (1991) The bootstrapped response function. Tree-Ring Bull 51:39–41Google Scholar
  36. Gutiérrez E (1989) Dendroclimatological study of Pinus sylvestris L. in southern Catalonia (Spain). Tree Ring Bull 49:1–9Google Scholar
  37. Jamagne M, Betremieux R, Begon JC, Mori A (1977) Quelques données sur la variabilité dans le milieu naturel de la réserve en eau des sols. Agro INRA 127:627–641Google Scholar
  38. Knapp PA, Soule PT, Grissino-Mayer HD (2001) Detecting potential regional effects of increased atmospheric CO2 on growth rates of western juniper. Glob Change Biol 7:903–917CrossRefGoogle Scholar
  39. Kozlowski TT (1992) Carbohydrate sources and sinks in woody-plants. Bot Rev 58:107–222CrossRefGoogle Scholar
  40. Ladier J (2004) Les stations forestières des Pré-Alpes Sèches. Définition, répartition, dynamique et fertilité. Scientific Report, French National Forest Office, Mediterranean Territorial DepartmentGoogle Scholar
  41. Le Goff N, Lévy G (1984) Productivité du frêne (Fraxinus excelsior L) en région Nord-Picardie B—Etude des relations entre la productivité et les conditions du milieu. Ann For Sci 45:135–170CrossRefGoogle Scholar
  42. Leal S, Melvin TM, Grabner M, Wimmer R, Briffa KR (2007) Tree-ring growth variability in the Austrian Alps: the influence of site, altitude, tree species and climate. Boreas 36:426–440CrossRefGoogle Scholar
  43. Leal S, Eamus D, Grabner M, Wimmer R, Cherubini P (2008) Tree rings of Pinus nigra from the Vienna basin region (Austria) show evidence of change in climatic sensitivity in the late 20th century. Can J For Res 38:744–759CrossRefGoogle Scholar
  44. Lebourgeois F, Lévy G, Aussenac G, Clerc B, Willm F (1998) Influence of soil drying on leaf water potential, photosynthesis, stomatal conductance and growth in two black pine varieties. Ann For Sci 55:287–299CrossRefGoogle Scholar
  45. Lebourgeois F, Bréda N, Ulrich E, Granier A (2005) Climate–tree-growth relationships of European beech (Fagus sylvatica L.) in the French Permanent Plot Network (RENECOFOR). Trees 19:385–401CrossRefGoogle Scholar
  46. Lebourgeois F, Pierrat JC, Perez V, Piedallu C, Cecchini S, Ulrich E (2010a) Simulating phenological shifts in French temperate forests under two climatic change scenarios and four driving GCMs. Int J Biometeorol 54:563–581PubMedCrossRefGoogle Scholar
  47. Lebourgeois F, Rathgeber C, Ulrich E (2010b) Sensitivity of French temperature coniferous forests to climate variability and extreme events (Abies alba, Picea abies and Pinus sylvestris). J Veg Sci 21:364–376CrossRefGoogle Scholar
  48. Leonelli G, Pelfini M, Battipaglia G, Cherubini P (2009) Site-aspect influence on climate sensitivity over time of a high-altitude Pinus cembra tree-ring network. Clim Change 96:185–201CrossRefGoogle Scholar
  49. Lindner M, Maroschek M, Netherer S, Kremer A, Barbati A, Garcia-Gonzalo J, Seidl R, Delzon S, Corona P, Kolstrom M, Lexer MJ, Marchetti M (2010) Climate change impacts, adaptive capacity, and vulnerability of European forest ecosystems. For Ecol Manag 259:698–709CrossRefGoogle Scholar
  50. Lloyd AH, Bunn AG (2007) Responses of the circumpolar boreal forest to 20th century climate variability. Environ Res Lett 2:045013CrossRefGoogle Scholar
  51. Luo YQ, Hui DF, Zhang DQ (2006) Elevated CO2 stimulates net accumulations of carbon and nitrogen in land ecosystems: a meta-analysis. Ecology 87:53–63PubMedCrossRefGoogle Scholar
  52. Macias M, Andreu L, Bosch O, Camarero JJ, Gutierrez E (2006) Increasing aridity is enhancing silver fir (Abies alba Mill.) water stress in its south-western distribution limit. Clim Change 79:289–313CrossRefGoogle Scholar
  53. Martin-Benito D, del Rio M, Canellas I (2010) Black pine (Pinus nigra Arn.) growth divergence along a latitudinal gradient in Western Mediterranean mountains. Ann For Sci 67. doi: 10.1051/forest/2009121
  54. Martinez-Vilalta J, Pinol J (2002) Drought-induced mortality and hydraulic architecture in pine populations of the NE Iberian Peninsula. For Ecol Manag 161:247–256CrossRefGoogle Scholar
  55. Martinez-Vilalta J, Sala A, Pinol J (2004) The hydraulic architecture of Pinaceae—a review. Plant Ecol 171:3–13CrossRefGoogle Scholar
  56. Martinez-Vilalta J, Lopez BC, Adell N, Badiella L, Ninyerola M (2008) Twentieth century increase of Scots pine radial growth in NE Spain shows strong climate interactions. Glob Change Biol 14:2868–2881CrossRefGoogle Scholar
  57. Medlyn BE, Dreyer E, Ellsworth D, Forstreuter M, Harley PC, Kirschbaum MUF, Le Roux X, Montpied P, Strassemeyer J, Walcroft A, Wang K, Loustau D (2002) Temperature response of parameters of a biochemically based model of photosynthesis. II. A review of experimental data. Plant Cell Environ 25:1167–1179CrossRefGoogle Scholar
  58. Mérian P, Lebourgeois F (2011) Size-mediated climate–growth relationships in temperate forests: a multi-species analysis. For Ecol Manag 261:1382–1391CrossRefGoogle Scholar
  59. Mitchell TD, Jones PD (2005) An improved method of constructing a database of monthly climate observations and associated highresolution grids. Int J Climatol 25:693–712 Google Scholar
  60. Mitchell TD, Carter TR, Jones PD, Hulme M, New M, Jones PD (2004) A comprehensive set of high-resolution grids of monthly climate for Europe and the globe : the observed record (1901–2000) and 13 scenarios (2001–2100). Tyndall Centre Working Paper, vol 55, pp 1–25Google Scholar
  61. Myers JL, Well AD (2003) Research design and statistical analysis, 2nd edn. Laurence Erlbaum Associates, Routledge AcademicGoogle Scholar
  62. Oberhuber W, Stumbock M, Kofler W (1998) Climate-tree-growth relationships of Scots pine stands (Pinus sylvestris L.) exposed to soil dryness. Trees 13:19–27Google Scholar
  63. Piovesan G, Biondi F, Di Filippo A, Alessandrini A, Maugeri M (2008) Drought-driven growth reduction in old beech (Fagus sylvatica L.) forests of the central Apennines, Italy. Glob Change Biol 14:1265–1281CrossRefGoogle Scholar
  64. Planells O, Gutierrez E, Helle G, Schleser GH (2009) A forced response to twentieth century climate conditions of two Spanish forests inferred from widths and stable isotopes of tree rings. Clim Change 97:229–252CrossRefGoogle Scholar
  65. Rebetez M, Dobbertin M (2004) Climate change may already threaten Scots pine stands in the Swiss Alps. Theor Appl Climatol 79:1–9CrossRefGoogle Scholar
  66. Richter K, Eckstein D, Holmes RL (1991) The dendrochronological signal of pine trees (Pinus ssp.) in Spain. Tree Ring Bull 51:1–13Google Scholar
  67. Ripert C, Vennetier M (2005) Evaluer la potentialité forestière d’un site sans observer la flore. Présentation d’une méthode développée en région méditerranéenne calcaire. Rendez Vous Tech 8:15–22Google Scholar
  68. Rolland C (2002) Decreasing teleconnections with inter-site distance in monthly climatic data and tree-ring width networks in a mountainous alpine area. Theor Appl Climatol 71:63–75CrossRefGoogle Scholar
  69. Rolland C, Desplanque C, Michalet R, Schweingruber FH (2000) Extreme tree rings in spruce (Picea abies L. Karst.) and fir (Abies alba Mill.) stands in relation to climate, site, and space in the southern French and Italian Alps. Arct Antarct Alp Res 32:1–13CrossRefGoogle Scholar
  70. Rossi S, Deslauriers A, Gricar J, Seo JW, Rathgeber CBK, Anfodillo T, Morin H, Levanic T, Oven P, Jalkanen R (2008) Critical temperatures for xylogenesis in conifers of cold climates. Global Ecol Biogeogr 17:696–707CrossRefGoogle Scholar
  71. Rutherford TA, Webster JM (1987) Distribution of pine wilt disease with respect to temperature in North-America, Japan, and Europe. Can J For Res 17:1050–1059CrossRefGoogle Scholar
  72. Silva LCR, Anand M, Leithead MD (2010) Recent widespread tree growth decline despite increasing atmospheric CO2. Plos One 5. doi: 10.1371/journal.pone.0011543
  73. Soulé PT, Knapp PA (2006) Radial growth rate increases in naturally occurring ponderosa pine trees: a late-20th century CO2 fertilization effect? New Phytol 171:379–390PubMedCrossRefGoogle Scholar
  74. Sperry JS, Sullivan JEM (1992) Xylem embolism in response to freeze-thaw cycles and water-stress in ring-porous, diffuse-porous and conifer species. Plant Physiol 100:605–613PubMedCrossRefGoogle Scholar
  75. Tardif J, Camarero JJ, Ribas M, Gutierrez E (2003) Spatiotemporal variability in tree growth in the Central Pyrenees: climatic and site influences. Ecol Monogr 73:241–257CrossRefGoogle Scholar
  76. Vennetier M, Ripert C, Maille E, Blanc L, Torre F, Roche P, Tatoni T, Brun JJ (2008) A new bioclimatic model calibrated with vegetation for Mediterranean forest areas. Ann For Sci 65. doi: 10.1051/forest/2008050
  77. Vitasse Y, Porte AJ, Kremer A, Michalet R, Delzon S (2009) Responses of canopy duration to temperature changes in four temperate tree species: relative contributions of spring and autumn leaf phenology. Oecologia 161:187–198PubMedCrossRefGoogle Scholar
  78. Weber P, Bugmann H, Rigling A (2007) Radial growth responses to drought of Pinus sylvestris and Quercus pubescens in an inner-Alpine dry valley. J Veg Sci 18:777–792CrossRefGoogle Scholar
  79. Wilmking M, Juday GP, Barber VA, Zald HSJ (2004) Recent climate warming forces contrasting growth responses of white spruce at treeline in Alaska through temperature thresholds. Glob Change Biol 10:1724–1736CrossRefGoogle Scholar
  80. Wilson RJS, Esper J, Luckman BH (2004) Utilising historical tree-ring data for dendroclimatology: a case study from the Bavarian Forest, Germany. Dendrochronologia 21:53–68CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • F. Lebourgeois
    • 1
    • 2
  • P. Mérian
    • 1
    • 2
  • F. Courdier
    • 3
  • J. Ladier
    • 4
  • P. Dreyfus
    • 3
  1. 1.AgroParisTech, UMR1092, Laboratoire d’Étude des Ressources Forêt Bois (LERFoB), ENGREFNancyFrance
  2. 2.INRA, UMR1092, Laboratoire d’Étude des Ressources Forêt Bois (LERFoB), Centre Inra de NancyChampenouxFrance
  3. 3.INRA, UR629 URFM, Écologie des Forêts Méditerranéennes, Site AgroparcAvignon Cedex 9France
  4. 4.Office National des Forêts, Département Recherche et Développement, ActiplusManosqueFrance

Personalised recommendations