, Volume 25, Issue 6, pp 975–985 | Cite as

Do tree-ring traits reflect different water deficit responses in young poplar clones (Populus × canadensis Mönch ‘I-214’ and P. deltoides ‘Dvina’)?

  • Claudia CocozzaEmail author
  • Alessio Giovannelli
  • Maria Laura Traversi
  • Gaetano Castro
  • Paolo Cherubini
  • Roberto Tognetti
Original Paper


Poplar clones are known to display a wide range of tolerance to drought and water-use efficiency, but the effects of water deficit on stem growth and tree-ring characteristics are rarely taken into account. This study was conducted in order to investigate whether the main tree-ring traits correlate with irrigation regimes during the growing season in ‘I-214’ and ‘Dvina’ 4-year-old poplar clone saplings grown in concrete tanks, during three consecutive years. Total carbon, stable carbon isotope, Klason lignin and α-cellulose contents were analyzed to characterize wood biochemistry; ring width, wood density, mean vessel density and mean vessel lumen area were analyzed to characterize wood anatomy to assess the influence of irrigation regime. In both clones, wood formed in 2005 was more enriched in 13C, suggesting drought-induced stomatal closure. Wood formed in 2006 was less variable in δ13C in relation to irrigation regimes. ‘Dvina’ showed higher Klason lignin content and wood density than ‘I-214’, whatever the irrigation regime, despite the larger ring widths. ‘Dvina’ has the potential to recover promptly after drought stress, but at the expense of poor wood technological properties, while ‘I-214’ could continue to grow more uniformly under limited water availability, though at a lower rate.


Stable carbon isotope Irrigation regime Cellulose Klason lignin Total carbon Wood anatomy 



The authors would like to thank two anonymous reviewers for their precious suggestions on an earlier draft of the manuscript.


  1. Arend M, Fromm J (2007) Seasonal change in the drought response of wood cell development in poplar. Tree Physiol 27:985–992PubMedGoogle Scholar
  2. Awad H, Barigah T, Badel E, Cochard H, Herbette S (2010) Poplar vulnerability to xylem cavitation acclimates to drier soil conditions. Physiol Plant 139:280–288PubMedGoogle Scholar
  3. Baucher M, Monties B, Van Montagu M, Boerjan W (1998) Biosynthesis and genetic engineering of lignin. Crit Rev Plant Sci 17:125–197CrossRefGoogle Scholar
  4. Berta M, Giovannelli A, Sebastiani F, Camussi A, Racchi ML (2010) Transcriptome changes in the cambial region of poplar (Populus alba L.) in response to water deficit. Plant Biol 12:341–354PubMedCrossRefGoogle Scholar
  5. Boettger T, Haupt M, Knöller K, Weise SM, Waterhouse JS, Rinne KT, Loader NJ, Sonninen E, Jungner H, Masson-Delmotte V, Stievenard M, Guillemin MT, Pierre M, Pazdur A, Leuenberger M, Filot M (2007) Wood cellulose preparation methods and mass spectrometric analyses of δ13C, δ18O and nonexchangeable δ2H values in cellulose, sugar, and starch: an interlaboratory comparison. Anal Chem 79:4603–4612PubMedCrossRefGoogle Scholar
  6. Borella S, Leuenberger M, Saurer M, Siegwolf R (1998) Reducing uncertainties in δ13C analysis of tree rings: pooling, milling, and cellulose extraction. J Geophys Res 103(D16):19519–19526CrossRefGoogle Scholar
  7. Boudet AM (2000) Lignins and lignification: selected issues. Plant Physiol Biochem 38:81–96CrossRefGoogle Scholar
  8. Cherubini P, Gartner BL, Tognetti R, Bräker OU, Schoch W, Innes JL (2003) Identification, measurement and interpretation of tree rings in woody species from Mediterranean climates. Biol Rev 78:119–148PubMedCrossRefGoogle Scholar
  9. Cocozza C, Lasserre B, Giovannelli A, Castro G, Fragnelli G, Tognetti R (2009) Low temperature induces different cold sensitivity in two poplar clones (Populus × canadensis Mönch ‘I-214’ and P. deltoides Marsh. ‘Dvina’). J Exp Bot 13:3655–3664CrossRefGoogle Scholar
  10. Dawson TE, Mambelli S, Plamboeck AH, Templer PH, Tu KP (2002) Stable isotopes in plant ecology. Annu Rev Ecol Syst 33:507–559CrossRefGoogle Scholar
  11. De Micco V, Saurer M, Aronne G, Tognetti R, Cherubini P (2007) Variations of wood anatomy and δ13C within- tree rings of coastal Pinus pinaster showing intra-annual density fluctuations. IAWA Journal 28:61–74Google Scholar
  12. Dence CW, Lin SY (1992) Introduction. In: Lin SY, Dence CW (eds) Methods in lignin chemistry. Springer, Heidelberg, pp 1–19Google Scholar
  13. Donaldson LA (2002) Abnormal lignin distribution in wood from severely drought stressed Pinus radiata trees. IAWA J 23:161–178Google Scholar
  14. Downes GM, Drew DM, Battaglia M, Schulze ED (2008) Measuring and modelling stem growth and wood formation: an overview. Dendrochronologia 27(2):147–157CrossRefGoogle Scholar
  15. Drew DM, O’Grady AP, Downes GM, Read J, Worledge D (2008) Daily patterns of stem size variation in irrigated and non-irrigated Eucalyptus globulus. Tree Physiol 28:1573–1581PubMedGoogle Scholar
  16. Drew DM, Downes GM, Evans R (2010) Short-term growth responses and associated wood density fluctuations in variously irrigated Eucalyptus globulus. Trees. doi: 10.1007/s00468-010-0494-x
  17. Effland MJ (1977) Modified procedure to determine acid-insoluble lignin in wood and pulp. Tappi J 60:143–144Google Scholar
  18. Eilmann B, Zweifel R, Buchmann N, Fonti P, Rigling A (2009) Drought-induced adaptation of the xylem in Pinus sylvestris and Quercus pubescens. Tree Physiol 29:1011–1020PubMedCrossRefGoogle Scholar
  19. Ellison AM, Bank MS, Clinton BD, Colburn EA, Elliott K, Ford CR, Foster DR, Kloeppel BD, Knoepp JD, Lovett GM, Mohan J, Orwig DA, Rodenhouse NL, Sobczak WV, Stinson KA, Stone JK, Swan CM, Thompson J, von Holle B, Webster JR (2005) Loss of foundation species: consequences for the structure and dynamics of forested ecosystems. Front Ecol Environ 9:479–486CrossRefGoogle Scholar
  20. Enquist BJ, West GB, Brown JH (1999) Quarter-power allometric scaling in vascular plants: functional basis and ecological consequences. In: Brown JH, West GB (eds) Scaling in Biology. Oxford University, Oxford, pp 167–197Google Scholar
  21. Facciotto G, Zambruno GP (2004) Risultati produttivi dei cloni di pioppo Dvina, Lena e Neva. Quaderni della Regione Piemonte. Agricoltura 41:35–39Google Scholar
  22. Fonti P, Garcia Gonzalez I, Sass-Klaassen U, von Arx G, Eilmann B, Eckstein D (2010) Studying global change through investigation of the plastic responses of xylem anatomy in tree rings. New Phytol 185:42–53PubMedCrossRefGoogle Scholar
  23. Galle A, Esper J, Feller U, Ribas-Carbo M, Fonti P (2010) Responses of wood anatomy and carbon isotope composition of Quercus pubescens saplings subjected to two consecutive years of summer drought. Ann For Sci 67:809CrossRefGoogle Scholar
  24. Giovannelli A, Deslauriers A, Fragnelli G, Scaletti L, Castro G, Rossi S, Crivellaro A (2007) Evaluation of drought response of two poplar clones (Populus × canadensis Münch ‘I-214’ and P. deltoides Marsh. ‘Dvina’) through high resolution analysis of stem growth. J Exp Bot 58:2673–2683PubMedCrossRefGoogle Scholar
  25. Hacke UG, Sperry JS, Pockman WT, Davis SD, McCulloh KA (2001) Trends in wood density and structure are linked to prevention of xylem implosion by negative pressure. Oecologia 126:457–461CrossRefGoogle Scholar
  26. Helle G, Schleser GH (2004) Beyond CO2-fixation by Rubisco—an interpretation of 13C/12C variations in tree-rings from novel intra-seasonal studies on broad-leaf trees. Plant Cell Environ 27:367–380CrossRefGoogle Scholar
  27. Hernandez RE, Koubaa A, Beaudoin M, Fortin Y (1998) Selected mechanical properties of fast-growing poplar hybrid clones. Wood Fiber Sci 30:138–147Google Scholar
  28. Jacobsen AL, Ewers FW, Pratt RB, Paddock WA, Davis SD (2005) Do xylem fibers affect vessel cavitation resistance? Plant Physiol 139:546–556PubMedCrossRefGoogle Scholar
  29. Larson P (1994) The vascular cambium: development and structure. Springer, New YorkGoogle Scholar
  30. Leavitt SW, Danzer SR (1993) Method for batch processing small wood samples to holocellulose for stable carbon isotope analysis. Anal Chem 65:87–89CrossRefGoogle Scholar
  31. Marron N, Villar M, Dreyer E, Delay D, Boudouresque E, Petit JM, Delmotte FM, Guehl JM, Monclus R, Brignolas F (2005) Diversity of leaf traits related to productivity in 31 Populus deltoides × Populus nigra clones. Tree Physiol 25:425–435PubMedGoogle Scholar
  32. McCarroll D, Loader NJ (2004) Stable isotopes in tree rings. Quat Sci Rev 23:771–801CrossRefGoogle Scholar
  33. Monclus R, Villar M, Barbaroux C, Bastien C, Fichot R, Delmotte FM, Delay D, Petit JM, Bréchet C, Dreyer E, Brignolas F (2009) Productivity, water-use efficiency and tolerance to moderate water deficit correlate in 33 poplar genotypes from a Populus deltoides × Populus trichocarpa F1 progeny. Tree Physiol 29:1329–1339PubMedCrossRefGoogle Scholar
  34. Niklas KJ (1992) Plant biomechanics. University of Chicago, ChicagoGoogle Scholar
  35. Olson JR, Jourdain CR, Rousseau RJ (1985) Selection for cellulose content, specific gravity and volume in young Populus deltoides clones. Can J For Res 15:393–396CrossRefGoogle Scholar
  36. Pellis A, Laureysens I, Ceulemans R (2004) Growth and production of a short rotation coppice culture of poplar. I. Clonal differences in leaf characteristics in relation to biomass production. Biomass Bioenerg 27:9–19CrossRefGoogle Scholar
  37. Pliura A, Zhang SY, MacKay J, Bousquet J (2007) Genotypic variation in wood density and growth traits of poplar hybrids at four clonal trials. For Ecol Manag 238:92–106CrossRefGoogle Scholar
  38. Preston KA, Cornwell WK, DeNoyer JL (2006) Wood density and vessel traits as distinct correlates of ecological strategy in 51 California coast range angiosperms. New Phytol 170:807–818PubMedCrossRefGoogle Scholar
  39. Saurer M, Siegenthaler U, Schweingruber F (1995) The climate-carbon isotope relationship in tree rings and the significance of site conditions. Tellus Ser B 47:320–330CrossRefGoogle Scholar
  40. Saurer M, Cherubini P, Bonani G, Siegwolf R (2003) Tracing carbon uptake from a natural CO2 spring into tree rings: an isotope approach. Tree Physiol 23:997–1004PubMedGoogle Scholar
  41. Searson MJ, Thomas DS, Montagu KD, Conroy JP (2004) Wood density and anatomy of water-limited eucalypts. Tree Physiol 24:1295–1302PubMedGoogle Scholar
  42. Smith P, Martino D, Cai Z, Gwary D, Janzen H, Kumar P, McCarl B, Ogle S, O’Mara F, Rice C, Scholes B, Sirotenko O, Howden M, McAllister T, Pan G, Romanenkov V, Schneider U, Towprayoon S (2007) Policy and technological constraints to implementation of greenhouse gas mitigation options in agriculture. Agric Ecosyst Environ 118:6–28CrossRefGoogle Scholar
  43. Sperry JS, Meinzer FC, McCulloh KA (2008) Safety and efficiency conflicts in hydraulic architecture: scaling from tissues to trees. Plant Cell Environ 31:632–645PubMedCrossRefGoogle Scholar
  44. Tognetti R, Michelozzi M, Lauteri M, Brugnoli E, Giannini R (2000) Geographic variation in growth, carbon isotope discrimination, and monoterpene composition in Pinus pinaster Ait. provenances. Can J For Res 30:1682–1690CrossRefGoogle Scholar
  45. Turner SR, Somerville CR (1997) Collapsed xylem phenotype of Arabidopsis identifies mutants deficient in cellulose deposition in the secondary cell wall. Plant Cell 9:689–701PubMedCrossRefGoogle Scholar
  46. Tuskan GA, Di Fazio S, Jansson S, Bohlmann J et al (2006) The genome of black cottonwood, Populus trichocarpa (Torr & Gray). Science 313:1596–1604PubMedCrossRefGoogle Scholar
  47. Verheyden A, Roggeman M, Bouillon S, Elskens M, Beeckman H, Koedam N (2005) Comparison between δ13C of a-cellulose and bulk wood in the mangrove tree Rhizophora mucronata: Implications for dendrochemistry. Chem Geol 219:275–282CrossRefGoogle Scholar
  48. Viglione A (2004) Stima dell’evapotraspirazione media mensile sul territorio Piemontese. Dipartimento di Idraulica, Trasporti e Infrastrutture Civili, Politecnico di Torino (
  49. Vital BR (1984) Métodos de Determinaşão da Densidade da Madeira. Boletin Técnico 1. Sociedade de Investigaçöes Florestais, Viçosa, pp 21Google Scholar
  50. Voltas J, Serrano L, Hernández M, Pemán J (2006) Carbon isotope discrimination, gas exchange and stem growth of four euramerican hybrid poplars under different watering regimes. New For 31:435–451CrossRefGoogle Scholar
  51. Wimmer R, Downes GM, Evans R (2002) High-resolution analysis of radial growth and wood density in Eucalyptus nitens, grown under different irrigation regimes. Ann For Sci 59:519–524CrossRefGoogle Scholar
  52. Yin C, Duan B, Wang X, Li C (2004) Morphological and physiological responses of two contrasting Poplar species to drought stress and exogenous abscisic acid application. Plant Sci 167:1091–1097CrossRefGoogle Scholar
  53. Zanne AE, Westoby M, Falster DS, Ackerly DD, Loarie SR, Arnold SJE, Coomes DA (2010) Angiosperm wood structure: global patterns in vessel anatomy and their relation to wood density and potential conductivity. Am J Bot 97:207–215PubMedCrossRefGoogle Scholar
  54. Zhang SY, Yu Q, Chauret G, Koubaa A (2003) Selection for both growth and wood properties in hybrid poplar clones. For Sci 49:901–908Google Scholar
  55. Zobel BJ, Jett JB (1995) Genetics of wood production. Springer, BerlinCrossRefGoogle Scholar
  56. Zweifel R, Zimmermann L, Zeugin F, Newbery DM (2006) Intra-annual radial growth and water relations of trees: implications towards a growth mechanism. J Exp Bot 57:1445–1459PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Claudia Cocozza
    • 1
    Email author
  • Alessio Giovannelli
    • 2
  • Maria Laura Traversi
    • 2
  • Gaetano Castro
    • 3
  • Paolo Cherubini
    • 4
  • Roberto Tognetti
    • 1
  1. 1.EcoGeoFor Lab, Dipartimento di Scienze e Tecnologie per l’Ambiente e il Territorio (STAT)Università degli Studi del MolisePescheItaly
  2. 2.Laboratorio XilogenesiIstituto Valorizzazione Legno e Specie Arboree, IVaLSA-CNRSesto FiorentinoItaly
  3. 3.Unità di Ricerca per le Produzioni Legnose Fuori Foresta, CRA, Strada per FrassinetoCasale MonferratoItaly
  4. 4.WSL Swiss Federal Institute for Forest, Snow and Landscape ResearchBirmensdorfSwitzerland

Personalised recommendations