, Volume 25, Issue 5, pp 859–872 | Cite as

Combining tree-ring analyses on stems and coarse roots to study the growth dynamics of forest trees: a case study on Norway spruce (Picea abies [L.] H. Karst)

  • Petia Simeonova NikolovaEmail author
  • Christian Zang
  • Hans Pretzsch
Original Paper


We show the potential of a new method combining tree-ring analyses on stems and on coarse roots of individual trees in order to advance the understanding of growth dynamics in forest trees. To this end, we studied the root–shoot allometry of trees and its dependence on site conditions. Along a gradient in water supply in Southern Germany from dry to moist sites we selected 43 Norway spruce trees (Picea abies [L.] H. Karst.) aged 65–100 years. Increment cores were taken from stem and main roots revealing aboveground and belowground growth course over the last 34 years. Annual growth rates in roots and stems and their allometric relationships were applied as surrogate variables for tree resource allocation to aboveground and belowground organs. The mean sensitivities of both stem and root chronologies were found to be site-specific, and increased from the moist through the dry sites. No temporal offset between aboveground and belowground growth reactions to climate conditions was found in Norway spruce at any of the sites. These results suggest that the root–shoot allometry depends on the specific site conditions only at the driest site, following the optimal biomass partitioning theory (the more restricted the water supply, the more organic matter allocation into the belowground organs).


Root–shoot allometry Picea abies Tree-ring analyses Optimal biomass partitioning theory 



The authors would like to thank the communicating editor and four anonymous reviewers for their helpful contributions for improving the previous version of this manuscript. P. S. N. was funded by the Technische Universität München, Life Science Centre, Gender Issue Incentive Fund (Program “Förderung der Habilitandinnen an der Fakultät WZW”). C. Z. was funded by the Bavarian State Ministry of Agriculture and Forestry (board of trustees of the Bavarian State Institute of Forestry LWF, grant E 45). The authors wish to thank the German Research Foundation (Deutsche Forschungsgemeinschaft) for providing funds for growth and yield research as part of the Collaborative Research Centre SFB 607 “Growth and Parasite Defence”. We thank also S. Seibold, G. Schütze, L. Ma and W. Jin for their skillful technical assistance.


  1. Ammer C, Wagner S (2002) Problems and options in modelling fine-root biomass of single mature Norway spruce trees at given points from stand data. Can J For Res 32:581–590CrossRefGoogle Scholar
  2. Andersen CP, Rygiewicz PT (1991) Stress interactions and mycorrhizal plant response: understanding carbon allocation priorities. Environ Pollut 73:217–244PubMedCrossRefGoogle Scholar
  3. Bazzaz FA, Grace J (eds) (1997) Plant resource allocation. Academic Press, San DiegoGoogle Scholar
  4. Bendz-Hellgren M, Stenlid J (1995) Long-term reduction in the diameter growth of butt rot affected Norway spruce, Picea abies. For Ecol Manag 74:239–243CrossRefGoogle Scholar
  5. Bloom AJ, Chapin FS III, Mooney HA (1985) Resource limitation in plants—an economic analogy. Annu Rev Ecol Syst 16:363–392Google Scholar
  6. Boisvenue C, Running SW (2006) Impacts of climate change on natural forest productivity—evidence since the middle of the 20th century. Glob Change Biol 12:862–882CrossRefGoogle Scholar
  7. Bolte A, Hertel D, Ammer Ch, Schmid I, Nörr R, Kuhr M, Redde N (2003) Freilandmethoden zur Untersuchung von Baumwurzeln. Forstarchiv 74:240–262Google Scholar
  8. Bolte A, Rahmann T, Kuhr M, Pogoda P, Murach D, von Gadow K (2004) Relationships between tree dimension and coarse root biomass in mixed stands of European beech (Fagus sylvatica L.) and Norway spruce (Picea abies [L.] Karst.). Plant Soil 264:1–11CrossRefGoogle Scholar
  9. Bouriaud O, Leban J-M, Bert D, Deleuze C (2005) Intra-annual variations in climate influence growth and wood density of Norway spruce. Tree Physiol 25:651–660PubMedGoogle Scholar
  10. Brundrett MC (2002) Coevolution of roots and mycorrhizas of land plants. New Phytol 154:275–304CrossRefGoogle Scholar
  11. Coleman M (2007) Spatial and temporal pattern of root distribution in developing stands of four woody crop species grown with drip irrigation and fertilization. Plant Soil 299:195–213CrossRefGoogle Scholar
  12. Comeau PG, Kimmins JP (1989) Above-ground and below-ground biomass and production of lodgepole pine on sites with differing soil-moisture regimes. Can J For Res 19:447–454CrossRefGoogle Scholar
  13. Côté B, Bélanger N, Courchesne F, Fyles JW, Hendershot WH (2003) A cyclical but asynchronous pattern of fine root production and radial growth in a hardwood forest of southern Quebec and its relationships with annual variation of temperature and nutrient availability. Plant Soil 250:49–57CrossRefGoogle Scholar
  14. Coutts MP (1987) Developmental processes in tree root systems. Can J For Res 17:761–767CrossRefGoogle Scholar
  15. Coutts MP, Nielsen CCN, Nicoll BC (1999) The development of symmetry, rigidity and anchorage in the structural root system of conifers. Plant Soil 217:1–15CrossRefGoogle Scholar
  16. Dech JP, Maun MA (2006) Adventitious root production and plastic resource allocation to biomass determine burial tolerance in woody plants from central Canadian coastal dunes. Ann Bot 98:1095–1105PubMedCrossRefGoogle Scholar
  17. Drexhage M, Gruber F (1999) Above- and below-stump relationships for Picea abies—estimating root system biomass from breast-height diameters. Scand J For Res 14:328–333CrossRefGoogle Scholar
  18. Drexhage M, Huber F, Colin F (1999) Comparison of radial increment and volume growth in stems and roots of Quercus petraea. Plant Soil 217:101–110CrossRefGoogle Scholar
  19. Eckstein D, Bauch J (1969) Beitrag zur Rationalisierung eines dendrochronologischen Verfahrens und zur Analyse seiner Aussagesicherheit. Forstwissenschaftliches Centralblatt 88:230–250CrossRefGoogle Scholar
  20. Efron B, Tibshirani RJ (1993) An introduction to the bootstrap. Chapman & Hall, New YorkGoogle Scholar
  21. Eissenstat DM (2002) Root lifespan, turnover and efficiency. In: Waisel Y, Eshel A, Kafkafi U (eds) Plant roots: the hidden half. Marcel Dekker, New York, pp 221–238Google Scholar
  22. Enders G et al (eds) (1996) Klimaatlas von Bayern/Bayerischer Klimaforschungsverbund. BayFORKLIM, MünchenGoogle Scholar
  23. Enquist BJ, Niklas KJ (2001) Invariant scaling relations across tree-dominated communities. Nature 410:655–660PubMedCrossRefGoogle Scholar
  24. Enquist BJ, Niklas KJ (2002) Global allocation rules for patterns of biomass partitioning in seed plants. Science 295:1517–1520PubMedCrossRefGoogle Scholar
  25. Foetzki A, Jonsson M, Kalberer M, Simon H, Mayer AC, Lundström T, Stöckli V, Ammann WJ (2004) Die mechanische Stabilität von Bäumen: das Projekt Baumstabilität des FB Naturgefahren. Eidgenössische Forschungsanstalt WSL, Birmensdorf. Forum für Wissen 2004:35–42Google Scholar
  26. Fritts HC (1976) Tree rings and climate. Academic Press, LondonGoogle Scholar
  27. Göttsche D (1972) Verteilung von Feinwurzeln und Mykorrhizen im Bodenprofil eines Buchen- und Fichtenbestandes im Solling. Mitteilungen der Bundesforschungsanstalt für Forst- und Holzwirtschaft 88, HamburgGoogle Scholar
  28. Grissino-Mayer HD (2001) Evaluating crossdating accuracy: a manual and tutorial for the computer program COFECHA. Tree Ring Bull 57:205–221Google Scholar
  29. Hodge A (2004) The plastic plant: root responses to heterogeneous supplies of nutrients. New Phytol 162:9–24CrossRefGoogle Scholar
  30. Hofman R, Ammer Ch (2008) Biomass partitioning of beech seedlings under the canopy of spruce. Austrian J For Sci 125:51–66Google Scholar
  31. Holmes RL (1983) Computer-assisted quality control in tree-ring dating and measurement. Tree Ring Bull 43:69–78Google Scholar
  32. Hutchings MJ, John EA (2004) The effects of environmental heterogeneity on root growth and root/shoot partitioning. Ann Bot 94:1–8PubMedCrossRefGoogle Scholar
  33. Huxley JS, Teissier G (1936) Terminology of relative growth. Nature 137:780–781CrossRefGoogle Scholar
  34. Joslin JD, Wolfe MH (1998) Impacts of water input manipulations on fine root production and mortality in a mature hardwood forest. Plant Soil 204:165–174CrossRefGoogle Scholar
  35. Joslin JD, Wolfe MH, Hanson PJ (2000) Effects of altered water regimes on forest root systems. New Phytol 147:117–129CrossRefGoogle Scholar
  36. Kahle HP (1994) Modellierung der Zusammenhänge zwischen der Variation von klimatischen Elementen des Wasserhaushalts und dem Radialzuwachs von Fichten (Picea abies (L.) Karst.) aus Hochlagen des Südschwarzwalds. Dissertation, Universität FreiburgGoogle Scholar
  37. Kahle HP, Spiecker H (1996) Adaptability of radial growth of Norway spruce to climate variations: results of a site specific dendroecological study in high elevations of the Black Forest (Germany). In: Dean JS, Meko DM, Swetnam TW (eds) Tree rings, environment and humanity: proceddings of the International Conference, Tucson, Arizona. Radiocarbon 1996, pp 785–801Google Scholar
  38. Klemmt HJ, Heindl M, Werner R, Hussendörfer E, Pretzsch H (2009) Auswirkungen von Trockenjahren auf das Wachstum von Mischbeständen. AFZ-Der Wald 9:461–464Google Scholar
  39. Knutson K, Pyke D (2008) Western juniper and ponderosa pine ecotonal climate-growth relationships across landscape gradients in southern Oregon. Can J For Res 38:3021–3032CrossRefGoogle Scholar
  40. Kölling C (1999) Ergebnisse von Stoffhaushaltsuntersuchungen an 22 Waldklimastationen. Jahrbuch 1998 der Bayerischen Waldklimastationen. Bayerische Landesanstalt für Wald und Forstwirtschaft, FreisingGoogle Scholar
  41. Kölling C, Knoke T, Schall P, Ammer C (2009) Überlegungen zum Risiko des Fichtenanbaus in Deutschland vor dem Hintergrund des Klimawandels. Forstarchiv 80:42–54Google Scholar
  42. Körner C, Asshoff R, Bignucolo O, Hättenschwiler S, Keel SG, Peláez-Riedl S, Pepin S, Siegwolf RTW, Zotz G (2005) Carbon flux and growth in mature deciduous forest trees exposed to elevated CO2. Science 26:1360–1362CrossRefGoogle Scholar
  43. Köstler JN, Brückner E, Biebelriether H (1968) Die Wurzeln der Waldbäume. PareyGoogle Scholar
  44. Kozovits AR, Matyssek R, Blaschke H, Göttlein A, Grams TEE (2005) Competition increasingly dominates the responsiveness of juvenile beech and spruce to elevated CO2 and/or O3 concentrations throughout two subsequent growing seasons. Glob Change Biol 11:1387–1401CrossRefGoogle Scholar
  45. Krause C (1992) Ganzbaumanalyse von Eiche, Buche, Kiefer und Fichte mit dendroökologischen Methoden. Dissertation, Universität HamburgGoogle Scholar
  46. Krause C, Eckstein D (1993) Dendrochronology of roots. Dendrochronologia 11:9–23Google Scholar
  47. Krause C, Morin H (1995) Changes in radial increment in stems and roots of balsam fir [Abies balsamea (L.) Mill.] after defoliation by spruce budworm. For Chron 71:747–754Google Scholar
  48. Krause C, Morin H (1999) Tree-ring pattern in stems and root systems of black spruce (Picea mariana) caused by spruce budworms. Can J For Res 29:1583–1591Google Scholar
  49. Lambers H, Chapin FS III, Pons TL (1998) Plant physiological ecology. Springer, New YorkGoogle Scholar
  50. Levy PE, Wendler R, Van Oijen M, Cannell MGR, Millard P (2004) The effects of nitrogen enrichment on the carbon sink in coniferous forests: uncertainty and sensitivity analyses of three ecosystem models. Water Air Soil Pollut 4:67–74Google Scholar
  51. Litton CM, Raich JW, Ryan MG (2007) Carbon allocation in forest ecosystems. Glob Change Biol 13:2089–2109CrossRefGoogle Scholar
  52. Loreau M, Naeem S, Inchausti P, Bengtsson J, Grime J, Hector A, Hooper D, Huston M, Raffaelli D, Schmid B, Tilman D, Wardle D (2001) Biodiversity and ecosystem functioning: current knowledge and future challenges. Science 294:804–808PubMedCrossRefGoogle Scholar
  53. Mäkelä A (1986) Implications of the pipe model theory on dry matter partitioning and height growth in trees. J Theor Biol 123:103–120CrossRefGoogle Scholar
  54. Mäkelä A, Valentine HT, Helmisaari HS (2008) Optimal co-allocation of carbon and nitrogen in a forest stand at steady state. New Phytol 180:114–123PubMedCrossRefGoogle Scholar
  55. Mäkinen H, Nöjd P, Mielikäinen K (2001) Climatic signal in annual growth variation in damaged and healthy stands of Norway spruce [Picea abies (L.) Karst.] in southern Finland. Trees 15:177–185CrossRefGoogle Scholar
  56. Mäkinen H, Nöjd P, Kahle HP, Neumann U, Tvejte B, Mielikäinen K, Röhle H, Spieker H (2003) Large-scale climatic variability and radial increment variation of Picea abies (L.) Karst. in central and northern Europe. Trees 17:173–184Google Scholar
  57. Mattheck C, Breloer H (1992) Der Wurzelquerschnitt als Protokoll der Lastgeschichte. Allgemeine Forst-und Jagd-Zeitung 163:142–145Google Scholar
  58. Matthes-Sears U, Nash CH, Larson DW (1995) Constrained growth of trees in a hostile environment: the role of water and nutrient availability for Thuja occidentalis on cliff faces. Int J Plant Sci 156:311–319CrossRefGoogle Scholar
  59. Matyssek R, Schnyder H, Munch J-C, Osswald W, Pretzsch H, Treutter D (2005) Resource allocation in plants—the balance between resource sequestration and retention. Plant Biol 6:557–559CrossRefGoogle Scholar
  60. Mayer H (1984) Waldbau auf soziologisch-ökologischer Grundlage. Gustav Fischer Verlag, StuttgartGoogle Scholar
  61. McCabe GJ, Markstrom SL (2007) A monthly water-balance model driven by a graphical user interface. U.S. geological survey open-file report 2007Google Scholar
  62. McCarthy MC, Enquist BJ (2007) Consistency between an allometric approach and optimal partitioning theory in global patterns of plant biomass allocation. Funct Ecol 21:713–720CrossRefGoogle Scholar
  63. McConnaughay KDM, Coleman JS (1999) Biomass allocation in plants: ontogeny or optimality? A test along three resource gradients. Ecology 80:2581–2593CrossRefGoogle Scholar
  64. Meier IC, Leuschner C (2008) Belowground drought response of European beech: fine root biomass and carbon partitioning in 14 mature stands across a precipitation gradient. Glob Chang Biol 14:1–15CrossRefGoogle Scholar
  65. Müller I, Schmid B, Weiner J (2000) The effect of nutrient availability on biomass allocation patterns in 27 species of herbaceous plants. Perspect Plant Ecol Evol Syst 3:115–127CrossRefGoogle Scholar
  66. Neuwirth B, Esper J, Schweingruber FH, Winiger M (2004) Site ecological differences to the climatic forcing of spruce pointer years from Lötschental, Switzerland. Dendrochronologia 21:69–78CrossRefGoogle Scholar
  67. Nicoll BC, Ray D (1996) Adaptive growth of tree root systems in response to wind and site conditions. Tree Physiol 16:891–898PubMedGoogle Scholar
  68. Nielsen CCN, Hansen JK (2006) Root CSA-root biomass prediction models in six tree species and improvement of models by inclusion of root architectural parameters. Plant Soil 280:339–356CrossRefGoogle Scholar
  69. Niklas KJ (2004) Plant allometry: is there a grand unifying theory? Biol Rev 79:871–889PubMedCrossRefGoogle Scholar
  70. Nikolova PS (2007) Below-ground competitiveness of adult beech and spruce trees: resource investments versus returns. Dissertation, Technische Universität München, FreisingGoogle Scholar
  71. Nikolova PS, Raspe S, Andersen CP, Mainiero R, Blaschke H, Matyssek R, Häberle KH (2009) Effects of the extreme drought in 2003 on soil respiration in a mixed forest. Eur J For Res 128:87–98Google Scholar
  72. Nikolova PS, Andersen CP, Blaschke H, Matyssek R, Häberle K-H (2010) Belowground effects of enhanced tropospheric ozone and drought in a beech/spruce forest (Fagus sylvatica L./Picea abies [L.] Karst). Environ Pollut 158:1071–1078PubMedCrossRefGoogle Scholar
  73. Pregitzer KS, Hendrick RL, Fogel R (1993) The demography of fine roots in response to patches of water and nitrogen. New Phytol 125:575–580CrossRefGoogle Scholar
  74. Pretzsch H (2009) Forest dynamics, growth and yield. From measurement to model. Springer, BerlinCrossRefGoogle Scholar
  75. Pretzsch H (2010) Re-evaluation of allometry. State-of-the-art and perspective regarding individuals and stands of woody plants. Prog Bot 71:339–369CrossRefGoogle Scholar
  76. Puddu A, Luisi N, Capretti P, Santini A (2003) Environmental factors related to damage by Heterobasidion abietinum in Abies alba forests in Southern Italy. For Ecol Manag 180:37–44CrossRefGoogle Scholar
  77. Puhe J (2003) Growth and development of the root system of Norway spruce (Picea abies) in forest stands—a review. For Ecol Manag 175:253–273CrossRefGoogle Scholar
  78. R Development Core Team (2009). R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0.
  79. Rebetez M, Mayer H, Dupont O, Schindler D, Gartner K, Kropp JP, Menzel A (2006) Heat and drought 2003 in Europe: a climate synthesis. Ann For Sci 63:569–577CrossRefGoogle Scholar
  80. Rinn F (2003) TSAP-Win: time series analysis and presentation for dendrochronology and related applications. HeidelbergGoogle Scholar
  81. Rötzer T, Grote R, Pretzsch H (2004) The timing of bud burst and its effect on tree growth. Int J Biometeorol 48:109–118PubMedCrossRefGoogle Scholar
  82. Santiago LS, Goldstein G, Meinzer FC, Fisher JB, Machado K, Woodruff D, Jones T (2004) Leaf photosynthetic traits scale with hydraulic conductivity. Oecologia 140:543–550PubMedCrossRefGoogle Scholar
  83. Schuhbäck T (2004) Nährelementenstatus und Bodenzustand an der Bestandesgrenze Buche-Fichte im Mischbestand Kranzberger Forst. Diploma Thesis, WZW, Technische Universität München, FreisingGoogle Scholar
  84. Schütt P, Schuck HJ, Stimm B (2002) Lexikon der Baum- und Straucharten. Das Standardwerk der Forstbotanik. Nikol Verlagsgesellschaft mbH & Co. KG, HamburgGoogle Scholar
  85. Seifert T (2007) Simulating the extent of decay caused by Heterobasidion annosum s. l. in stems of Norway spruce. For Ecol Manag 248:95–106CrossRefGoogle Scholar
  86. Shepard D (1968) A two dimensional interpolation function for regularly spaced data. In: Proceedings of the 1968 23rd ACM national conference, PrincetonGoogle Scholar
  87. Shinozaki K, Yoda K, Hozumi K, Kira T (1964) A quantitative analysis of plant form—the pipe model theory. I. Basic analyses. Jpn J Ecol 14:97Google Scholar
  88. Shipley B, Meziane D (2002) The balanced-growth hypothesis and the allometry of leaf and root biomass allocation. Funct Ecol 16:326–331CrossRefGoogle Scholar
  89. Spangenberg A, Utschig H, Preuhsler T, Pretzsch H (2004) Characterising the effects of high ammonia emission on the growth of Norway spruce. Plant Soil 262:337–349CrossRefGoogle Scholar
  90. Stockfors J, Linder S (1998) Effect of nitrogen on the seasonal course of growth and maintenance respiration in stems of Norway spruce trees. Tree Physiol 18:155–166PubMedGoogle Scholar
  91. Stokes MA, Smiley TL (1968) An introduction to tree-ring dating. The University of Chicago Press, ChicagoGoogle Scholar
  92. Urban ST, Lieffers VJ, MacDonald SE (1994) Release in radial growth in the trunk and structural roots of white spruce as measured by dendrochronology. Can J For Res 24:1550–1556CrossRefGoogle Scholar
  93. Utschig H, Bachmann M, Pretzsch H (2004) Das Trockenjahr 1976 bescherte langjährige Zuwachseinbrüche. LWF aktuell 43:17–18Google Scholar
  94. Valentine HT (1985) Tree-growth models: derivations employing the pipe-model theory. J Theor Biol 177:579CrossRefGoogle Scholar
  95. Vanninen P, Ylitalo H, Sievänen R, Mäkelä A (1996) Effects of age and site quality on the distribution of biomass in Scots pine (Pinus sylvestris L.). Trees 10:231–238Google Scholar
  96. Walter H, Lieth H (1960–1967) Klimadiagramm-Weltatlas. Jena, GermanyGoogle Scholar
  97. Wang JR, Letchford T, Comeau P, Kimmins JP (2000) Above- and below-ground biomass and nutrient distribution of a paper birch and subalpine mixed-species stand in the Sub-Boreal Spruce zone of British Columbia. For Ecol Manag 130:17–26CrossRefGoogle Scholar
  98. Weiner J (2004) Allocation, plasticity and allometry in plants. Perspect Plant Ecol Evol Syst 6:207–215CrossRefGoogle Scholar
  99. Weinstein DA, Beloin RM, Yanai RD (1991) Modeling changes in red spruce carbon balance and allocation in response to interacting ozone and nutrient stresses. Tree Physiol 9:127–146PubMedGoogle Scholar
  100. Zirlewagen D, von Wilpert K (2001) Modeling water and ion fluxes in a highly structured, mixed-species stand. For Ecol Manag 143:27–37CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Petia Simeonova Nikolova
    • 1
    Email author
  • Christian Zang
    • 1
    • 2
  • Hans Pretzsch
    • 1
  1. 1.Chair for Forest Growth and Yield ScienceTechnische Universität MünchenFreisingGermany
  2. 2.Faculty of ForestryUniversity of Applied Sciences WeihenstephanFreisingGermany

Personalised recommendations