, Volume 25, Issue 3, pp 551–557 | Cite as

Analysis of re-integrated Ac element positions in the genome of Populus provides a basis for Ac/Ds-transposon activation tagging in trees

Short Communication


With a view to establish an efficient gene tagging system for forest tree species, we assessed the transposition behaviour of the maize transposable element Ac in poplar. In earlier work, we showed that new integration sites were often located within predicted or known coding sequences. However, somatic transposition behaviour of Ac with regard to conserved chromosome specificity or, more specifically, whether Ac transposition is restricted to the chromosome on which the primary insertion locus (donor) is located or whether it is able to pass chromosomal boundaries, remained unclear. To answer these questions, we took advantage of the publicly available Populus trichocarpa genome sequence (Phytozome v5.0; and three 35S::Ac-rolC transgenic hybrid aspen lines to determine the flanking sequences of Ac re-integration sites for tissue sectors from which Ac had been excised. Only about one-third of the analysed re-integrations were positioned within the scaffold containing the primary Ac donor locus, and the majority of re-integrations were found scattered over many unlinked sites on other scaffolds confirming that Ac transposition in poplar does in fact cross chromosome boundaries. The majority of re-integration sites (57.1%) were found within or near coding regions demonstrating that Ac/Ds transposon tagging in poplar holds much promise for the efficient induction of mutants and functional genomics studies in forest tree species.


Functional genomics Poplar Tree genomics Transgenic aspen Transposition 



I thank O. Polak, D. Ebbinghaus and A. Schellhorn for skilful technical assistance. This work was supported by Ministry of Education and Research (BMBF) funded under ‘Genome Analysis in the Biological System Plant’ (GABI; project GABI-POP) and the German Research Foundation (projects FL263/12-2 and FL263/12-3). In particular, I thank Prof. Dr. Gerd Bossinger (University of Melbourne, Australia) for critically reading the manuscript and for his very helpful corrections.


  1. Busov V, Meilan R, Pearce DW, Ma C, Rood SB, Strauss SH (2003) Activation tagging of a dominant gibberellin catabolism gene (GA 2-oxidase) from poplar that regulates tree stature. Plant Physiol 132:1283–1291PubMedCrossRefGoogle Scholar
  2. Busov V, Brunner A, Meilan R, Filichkin S, Ganio L, Gandhi S, Strauss SH (2005) Genetic transformation: a powerful tool for dissection of adaptive traits in trees. New Phytol 167:9–18PubMedCrossRefGoogle Scholar
  3. Busov V, Yordanov Y, Gou J, Meilan R, Ma C, Regan S, Strauss S (2010) Activation tagging is an effective gene tagging system in Populus. Tree Genet Genomes. doi: 10.1007/s11295-010-0317-7
  4. Cooper LD, Marquez-Cedillo L, Singh J, Sturbaum AK, Zhang S, Edwards V, Johnson K, Kleinhofs A, Rangel S, Carollo V, Bregitzer P, Lemaux PG, Hayes PM (2004) Mapping Ds insertions in barley using a sequence-based approach. Mol Genet Genomics 272:181–193PubMedCrossRefGoogle Scholar
  5. Feldmann KA (1991) T-DNA insertion mutagenesis in Arabidopsis: mutational spectrum. Plant J 1:71–82CrossRefGoogle Scholar
  6. Flachowsky H, Hanke MV, Peil A, Strauss SH, Fladung M (2009) A review on transgenic approaches to accelerate breeding of woody plants. Plant Breed 128:217–226CrossRefGoogle Scholar
  7. Fladung M (1990) Transformation of diploid and tetraploid potato clones with the rolC gene of Agrobacterium rhizogenes and characterization of transgenic plants. Plant Breed 104:295–304CrossRefGoogle Scholar
  8. Fladung M (1999) Gene stability in transgenic aspen (Populus). I. Flanking DNA sequences and T-DNA structure. Mol Gen Genet 260:574–581PubMedCrossRefGoogle Scholar
  9. Fladung M, Ahuja MR (1997) Excision of the maize transposable element Ac in periclinal chimeric leaves of 35S-Ac-rolC transgenic aspen-Populus. Plant Mol Biol 33:1097–1103PubMedCrossRefGoogle Scholar
  10. Fladung M, Kumar S, Ahuja MR (1997) Genetic transformation of Populus genotypes with different chimeric gene constructs: transformation efficiency and molecular analysis. Trans Res 6:111–121CrossRefGoogle Scholar
  11. Fladung M, Deutsch F, Hönicka H, Kumar S (2004) DNA and transposon tagging in aspen. Plant Biol 6:5–11PubMedCrossRefGoogle Scholar
  12. Fladung M, Schenk TMH, Polak O, Becker D (2010) Elimination of marker genes and targeted integration via FLP/FRT-recombination system from yeast in hybrid aspen (Populus tremula L. × P. tremuloides Michx.). Tree Genet Genomes 6:205–217CrossRefGoogle Scholar
  13. Greco R, Ouwerkerk PBF, Taal AJC, Favalli C, Beguiristain T, Puigdomènech P, Colombo L, Hoge JHC, Pereira A (2001) Early and multiple Ac transpositions in rice suitable for efficient insertional mutagenesis. Plant Mol Biol 46:215–227PubMedCrossRefGoogle Scholar
  14. Greco R, Ouwerkerk PBF, De Kam RJ, Sallaud C, Favalli C, Colombo L, Guiderdoni E, Meijer AH, Hoge JHC, Pereira A (2004) Transpositional behaviour of an Ac/Ds system for reverse genetics in rice. Theor Appl Genet 108:10–24CrossRefGoogle Scholar
  15. Harrison EJ, Bush M, Plett JM, McPhee DP, Vitez R, O’Malley B, Sharma V, Bosnich W, Seguin A, MacKay J, Regan S (2007) Diverse developmental mutants revealed in an activation tagged population of poplar. Can J Bot 85:1071–1087CrossRefGoogle Scholar
  16. Kolesnik T, Szeverenyi I, Bachmann D, Kumar CS, Jiang S, Ramamoorthy R, Cai M, Ma ZG, Sundaresan V, Ramachandran S (2004) Establishing an efficient Ac/Ds tagging system in rice: large-scale analysis of Ds flanking sequences. Plant J 37:301–314PubMedCrossRefGoogle Scholar
  17. Koncz C, Martini N, Mayerhofer R, Koncz-Kalman Z, Körber H, Redei GP, Schell J (1989) High-frequency T-DNA-mediated gene tagging in plants. Proc Natl Acad Sci USA 86:8467–8471PubMedCrossRefGoogle Scholar
  18. Kumar S, Fladung M (2003) Somatic mobility of the maize element Ac and its usability for gene tagging in aspen. Plant Mol Biol 51:643–650PubMedCrossRefGoogle Scholar
  19. Martienssen RA (1998) Functional genomics: Probing plant gene function and expression with transposons. Proc Natl Acad Sci USA 95:2021–2026PubMedCrossRefGoogle Scholar
  20. McGinnis KM (2010) RNAi for functional genomics in plants. Brief Funct Genomic 9:111–117CrossRefGoogle Scholar
  21. McKenzie N, Dale PJ (2004) Mapping of transposable element Dissociation inserts in Brassica oleracea following plant regeneration from streptomycin selection of callus. Theor Appl Genet 109:333–341PubMedCrossRefGoogle Scholar
  22. Meissner R, Chague V, Zhu Q, Emmanuel E, Elkind Y, Levy AA (2000) A high throughput system for transposon tagging and promoter trapping in tomato. Plant J 22:265–274PubMedCrossRefGoogle Scholar
  23. Pakull B, Groppe K, Meyer M, Markussen T, Fladung M (2009) Genetic linkage mapping in aspen (Populus tremula L. and P. tremuloides Michx.). Tree Genet Genomes 5:505–515CrossRefGoogle Scholar
  24. Parinov S, Sevugan M, Ye D, Yang WC, Kumaran M, Sundaresan V (1999) Analysis of flanking sequences from Dissociation insertion lines: a database for reverse genetics in Arabidopsis. Plant Cell 11:2263–2270PubMedCrossRefGoogle Scholar
  25. Qu SH, Desai A, Wing R, Sundaresan V (2008) A versatile transposon-based activation tag system for functional genomics in cereals and other monocot plants. Plant Physiol 146:189–199PubMedCrossRefGoogle Scholar
  26. Raina S, Mahalingam R, Chen FQ, Fedoroff N (2002) A collection of sequenced and mapped Ds transposon insertion sites in Arabidopsis thaliana. Plant Mol Biol 50:93–110PubMedCrossRefGoogle Scholar
  27. Springer PS (2000) Gene traps: tools for plant development and genomics. Plant Cell 12:1007–1020PubMedCrossRefGoogle Scholar
  28. Suzuki Y, Uemura S, Saito Y, Murofushi N, Schmitz G, Theres K, Yamaguchi I (2001) A novel transposon tagging element for obtaining gain-of-function mutants based on a self-stabilizing Ac derivative. Plant Mol Biol 45:123–131PubMedCrossRefGoogle Scholar
  29. Tuskan GA, Difazio S, Jansson S, Bohlmann J, Grigoriev I, Hellsten U, Putnam N, Ralph S, Rombauts S, Salamov A, Schein J, Sterck L, Aerts A, Bhalerao RR, Bhalerao RP, Blaudez D, Boerjan W, Brun A, Brunner A, Busov V, Campbell M, Carlson J, Chalot M, Chapman J, Chen GL, Cooper D, Coutinho PM, Couturier J, Covert S, Cronk Q, Cunningham R, Davis J, Degroeve S, Déjardin A, Depamphilis C, Detter J, Dirks B, Dubchak I, Duplessis S, Ehlting J, Ellis B, Gendler K, Goodstein D, Gribskov M, Grimwood J, Groover A, Gunter L, Hamberger B, Heinze B, Helariutta Y, Henrissat B, Holligan D, Holt R, Huang W, Islam-Faridi N, Jones S, Jones-Rhoades M, Jorgensen R, Joshi C, Kangasjärvi J, Karlsson J, Kelleher C, Kirkpatrick R, Kirst M, Kohler A, Kalluri U, Larimer F, Leebens-Mack J, Leplé JC, Locascio P, Lou Y, Lucas S, Martin F, Montanini B, Napoli C, Nelson DR, Nelson C, Nieminen K, Nilsson O, Pereda V, Peter G, Philippe R, Pilate G, Poliakov A, Razumovskaya J, Richardson P, Rinaldi C, Ritland K, Rouzé P, Ryaboy D, Schmutz J, Schrader J, Segerman B, Shin H, Siddiqui A, Sterky F, Terry A, Tsai CJ, Uberbacher E, Unneberg P, Vahala J, Wall K, Wessler S, Yang G, Yin T, Douglas C, Marra M, Sandberg G, Van de Peer Y, Rokhsar D (2006) The genome of black cottonwood, Populus trichocarpa (Torr. & Gray). Science 313:1596–1604PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  1. 1.Johann Heinrich von Thuenen-Institute, Federal Research Institute for Rural Areas, Forestry and FisheriesInstitute of Forest GeneticsGrosshansdorfGermany

Personalised recommendations