Advertisement

Trees

, Volume 25, Issue 2, pp 265–276 | Cite as

Effects of climate on diameter growth of co-occurring Fagus sylvatica and Abies alba along an altitudinal gradient

  • Cailleret MaximeEmail author
  • Davi Hendrik
Original Paper

Abstract

In high-elevation forests, growth is limited by low temperatures, while in Mediterranean climates drought and high temperatures are the main limiting factors. Consequently, the climate-growth relationships on Mont Ventoux, a mountain in the Mediterranean area, are influenced by both factors. Two co-occurring species were studied: silver fir (Abies alba Mill.) and common beech (Fagus sylvatica L.), whose geographical distribution depends on their low tolerance to summer drought at low altitude/latitude, and low temperatures (late frost and short length of the growing season) at high altitude/latitude. Firs and beeches distributed along an elevational gradient were investigated using dendroecological methods. Silver fir growth was found to be more sensitive to summer water stress than beech. On the other hand, beech growth was more impacted by extreme events such as the 2003 heat wave, and negatively related to earlier budburst, which suggests a higher sensitivity to late frost. These results are confirmed by the different altitudinal effects observed in both species. Beech growth decreases with altitude whereas an optimum of growth potential was observed at intermediate elevations for silver fir. Recent global warming has caused a significant upward shift of these optima. As found for the period 2000–2006, rising temperatures and decreasing rainfall may restrain growth of silver fir. If these trends continue in the future beech might be favored at low altitudes. The species will have a reduced capacity to migrate to higher altitudes due to its sensitivity to late frosts, although an upward shift of silver fir is likely.

Keywords

Growth Altitude Abies alba Fagus sylvatica Climate change Drought 

Notes

Acknowledgments

The authors wish to thank Nicolas Mariotte, William Brunetto and Florence Courdier for their support in the field. We would also like to thank Philippe Dreyfus and Bruno Fady for reading and comments on the paper. We are very grateful to Julia Fady-Welterlen and May Myklebust for the English revision of the whole manuscript. Thanks are also due to anonymous reviewers for their useful comments. This study was supported by the French National Institute for Agronomical Research (ECOGER Project).

Supplementary material

468_2010_503_MOESM1_ESM.pdf (78 kb)
Supplementary material (PDF 78 kb)

References

  1. Augspurger CK (2009) Spring 2007 warmth and frost: phenology, damage and refoliation in a temperate deciduous forest. Funct Ecol 23:1031–1039. doi: 10.1111/j.1365-2435.2009.01587.x CrossRefGoogle Scholar
  2. Aussenac G (2002) Ecology and ecophysiology of circum-Mediterranean firs in the context of climate change. Ann For Sci 59:823–832CrossRefGoogle Scholar
  3. Awaya Y, Tanaka K, Kodani E, Nishizono T (2009) Responses of beech (Fagus crenata Blume) stand to late spring frost damage in Morioka, Japan. For Ecol Manag 257:2359–2369. doi: 10.1016/j.foreco.2009.03.028 CrossRefGoogle Scholar
  4. Badeau V (1995) Etude dendroécologique du hêtre (Fagus sylvatica L.) sur les plateaux calcaires de Lorraine. Influence de la gestion sylvicole. PhD thesis. Université de Nancy I Henry Poincaré, FranceGoogle Scholar
  5. Beckage B, Osborne B, Gavin DG, Pucko C, Siccama T, Perkins T (2008) A rapid upward shift of a forest ecotone during 40 years of warming in the Green Mountains of Vermont. PNAS 105:4197–4202PubMedCrossRefGoogle Scholar
  6. Bert GD (1992) Influence du climat, des facteurs stationnels et de la pollution sur la croissance et l’état sanitaire du sapin pectiné (Abies alba Mill.) dans le Jura. Etude phytoécologique et dendrochronologique. PhD thesis. Université de Nancy I Henry Poincaré, FranceGoogle Scholar
  7. Breda N, Huc R, Granier A, Dreyer E (2006) Temperate forests trees and stands under severe drought: a review of ecophysiological responses, adaptations processes and long-term consequences. Ann For Sci 63:625–644. doi: 10.1051/forest:2006042 CrossRefGoogle Scholar
  8. Bronson DR, Gower ST, Tanner M, Van Herk I (2009) Effect of ecosystem warming on boreal black spruce bud burst and shoot growth. Glob Change Biol 15:1534–1543. doi: 10.1111/j.1365-2486.2009.01845.x CrossRefGoogle Scholar
  9. Büntgen U, Franck CD, Kaczka RJ, Verstege A, Zwijacz-Kozica T, Esper J (2007) Growth responses to climate in a multi-species tree-ring network in the Western Carpathian Tatra Mountains, Poland and Slovakia. Tree Physiol 27:689–702PubMedGoogle Scholar
  10. Cailleret M, Bert D, Davi H (2010) Global change induces contradictory age effects on tree-ring growth sensitivity to climate. Trees (submitted)Google Scholar
  11. Chauchard S, Carcaillet C, Guibal F (2007) Patterns of land-use abandonment control tree-recruitment and forest dynamics in Mediterranean mountains. Ecosystems 10:936–948CrossRefGoogle Scholar
  12. Christensen JH, Hewitson B, Busuioc A, Chen A, Gao X, Held I, Jones R, Kolli RK, Kwon WT, Laprise R, Magaña Rueda V, Mearns L, Menéndez CG, Räisänen J, Rinke A, Sarr A, Whetton P (2007) Regional climate projections. In: Solomon S, Qin D, Manning M et al (eds) Climate change 2007: the physical science basis. Contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge/New YorkGoogle Scholar
  13. Chuine I, Cour P (1999) Climatic determinants of budburst seasonality in four temperate-zone tree species. New Phytol 143:339–349CrossRefGoogle Scholar
  14. Ciais P, Reichstein M, Viovy N, Granier A, Ogee J, Allard V, Aubinet M, Buchmann N, Bernhofer C, Carrara A, Chevallier F, De Noblet N, Friend AD, Friedlingstein P, Grunwald T, Heinesch B, Keronen P, Knohl A, Krinner G, Loustau D, Manca G, Matteucci G, Miglietta F, Ourcival JM, Papale D, Pilegaard K, Rambal S, Seufert G, Soussana JF, Sanz MJ, Schulze ED, Vesala T, Valentini R (2005) Europe-wide reduction in primary productivity caused by the heat and drought in 2003. Nature 437:529–533PubMedCrossRefGoogle Scholar
  15. Cochard H, Lemoine D, Améglio T, Granier A (2001) Mechanisms of xylem recovery from winter embolism in Fagus sylvatica. Tree Physiol 21:27–33PubMedGoogle Scholar
  16. Cook E (1985) A time series analysis approach to tree-ring standardization. PhD dissertation, University of Arizona, TucsonGoogle Scholar
  17. Coomes DA, Allen RB (2007) Effects of size, competition and altitude on tree growth. J Ecol 95:1084–1097CrossRefGoogle Scholar
  18. Čufar K, Prislan P, De Luis M, Gricar J (2008) Tree-ring variation, wood formation and phenology of beech (Fagus sylvatica) from a representative site in Slovenia, SE Central Europe. Trees 22:749–758. doi: 10.1007/s00468-008-0235-6 CrossRefGoogle Scholar
  19. Davi H, Dufrêne E, Francois C, Le Maire G, Loustau D, Bosc A, Rambal S, Granier A, Moors E (2006) Sensitivity of water and carbon fluxes to climate changes from 1960 to 2100 in European forest ecosystems. Agric For Meteorol 141:35–56. doi: 10.1016/j.agrformet.2006.09.003 CrossRefGoogle Scholar
  20. Delpierre N, Dufrêne E, Soudani K, Ulrich E, Cecchini S, Boé J, François C (2009) Modelling interannual and spatial variability of leaf senescence for three deciduous species in France. Agric For Meteorol 149:938–948. doi: 10.1016/j.agrformet.2008.11.014 CrossRefGoogle Scholar
  21. Desplanque C, Rolland C, Michalet R (1998) Dendroécologie comparée du sapin blanc (Abies alba) et de l’épicéa commun (Picea abies) dans une vallée alpine de France. Can J For Res 28:737–748CrossRefGoogle Scholar
  22. Di Filippo A, Biondi F, Čufar K, de Luis M, Grabner M, Maugeri M, Saba EP, Schirone B, Piovesan G (2007) Bioclimatology of beech (Fagus sylvatica L.) in the Eastern Alps: spatial and altitudinal climatic signals identified through a tree-ring network. J Biogeogr 34:1873–1892. doi: 10.1111/j.1365-2699.2007.01747.x CrossRefGoogle Scholar
  23. Dittmar C, Elling W (2006) Phenological phases of common beech (Fagus sylvatica L.) and their dependence on region and altitude in Southern Germany. Eur J For Res 125:181–188Google Scholar
  24. Dittmar C, Zech W, Elling W (2003) Growth variations of common beech (Fagus sylvatica L.) under different climatic and environmental conditions in Europe—a dendroecological study. For Ecol Manag 173:63–78CrossRefGoogle Scholar
  25. Dittmar C, Fricke W, Elling W (2006) Impact of late frost events on radial growth of common beech (Fagus sylvatica L.) in Southern Germany. Eur J For Res 125:249–259Google Scholar
  26. Dobbertin M (2005) Tree growth as indicator of tree vitality and if tree reaction to environmental stress: a review. Eur J For Res 124:319–333. doi: 10.1007/s10342-005-0085-3 Google Scholar
  27. Esper J, Cook ER, Krusic PJ, Peters K, Schweingruber FH (2003) Tests of the RCS method for preserving low-frequency variations in long tree-ring chronologies. Tree Ring Res 59:81–98Google Scholar
  28. Fritts HC (1976) Tree-ring and climate. Academic Press, LondonGoogle Scholar
  29. Geßler A, Keitel C, Kreuzwieser J, Matyssek R, Seiler W, Rennenberg H (2007) Potential risks for European beech (Fagus sylvatica L) in a changing climate. Trees 21:1–11. doi: 10.1007/s00468-006-0107-x CrossRefGoogle Scholar
  30. Granier A, Reichstein M, Bréda N, Janssens IA, Falge E, Ciais P, Grünwald T, Aubinet M, Berbigier P, Bernhofer C, Buchmann N, Facini O, Grassi G, Heinesch B, Ilvesniemi H, Keronen P, Knohl A, Köstner B, Lagergren F, Lindroth A, Longdoz B, Loustau D, Mateus J, Montagnani L, Nys C, Moors E, Papale D, Peiffer M, Pilegaard K, Pita G, Pumpanen J, Rambal S, Rebmann C, Rodrigues C, Seufert G, Tenhunen J, Vesala T, Wang Q (2007) Evidence for soil water control on carbon and water dynamics in European forests during the extremely dry year: 2003. Agric For Meteorol 143:123–145. doi: 10.1016/j.agrformet.2006.12.004 CrossRefGoogle Scholar
  31. Green DS (2007) Controls of growth phenology vary in seedlings of three, co-occurring ecologically distinct northern conifers. Tree Physiol 27:1197–1205. doi: 10.1093/treephys/27.8.1197 PubMedGoogle Scholar
  32. Guehl JM (1985) Etude comparée des potentialités hivernales d’assimilation carbonée de trois conifères de la zone tempérée (Pseudotsuga menziesii Mirb., Abies alba Mill. et Picea excelsa Link.). Ann For Sci 42:23–38CrossRefGoogle Scholar
  33. Guicherd P (1994) Water relations of European silver fir (Abies alba Mill.) in 2 natural stands in the French Alps subject to contrasting climatic conditions. Ann For Sci 51:599–611CrossRefGoogle Scholar
  34. Guiot J (1986) Sur la détermination de régions climatiques quasi-homogènes. Revue de Statistiques Appliquées. 34:15–34Google Scholar
  35. Handa T, Körner C, Hättenschwiler S (2006) Conifer stem growth at the altitudinal treeline in response to four years of CO2 enrichment. Glob Change Biol 12:2417–2430. doi: 10.1111/j.1365-2486.2006.01258.x CrossRefGoogle Scholar
  36. Hanninen H (2006) Climate warming and the risk of frost damage to boreal forest trees: identification of critical ecophysiological traits. Tree Physiol 26:889–898PubMedGoogle Scholar
  37. Hyvönen R, Ågren GI, Linder S, Persson T, Cotrufo MF, Ekblad A, Freeman M, Grelle A, Janssens IA, Jarvis PG, Kellomäki S, Lindroth A, Loustau D, Lundmark T, Norby RJ, Oren R, Pilegaard K, Ryan MG, Sigurdsson BD, Strömgren M, van Oijen M, Wallin G (2007) The likely impact of elevated [CO2], nitrogen deposition, increased temperature and management on carbon sequestration in temperate and boreal forest ecosystems: a literature review. New Phytol 173:463–480PubMedCrossRefGoogle Scholar
  38. Jolly WM, Dobbertin M, Zimmermann NE, Reichstein M (2005) Divergent vegetation growth responses to the 2003 heat wave in the Swiss Alps. Geophys Res Lett 32:L18409. doi: 10.1029/2005GL023252 CrossRefGoogle Scholar
  39. Jump AS, Hunt JM, Peñuelas J (2006) Rapid climate change-related growth decline at the southern range edge of Fagus sylvatica. Glob Change Biol 12:2163–2174. doi: 10.1111/j.1365-2486.2006.01250.x CrossRefGoogle Scholar
  40. Jump AS, Mátyas C, Peñuelas J (2009) The altitude-for-latitude disparity in the range retractions of woody species. Trends Ecol Evol 24:694–701. doi: 10.1016/j.tree.2009.06.007 PubMedCrossRefGoogle Scholar
  41. Körner C (2007) The use of ‘altitude’ in ecological research. Trends Ecol Evol 22:569–574PubMedCrossRefGoogle Scholar
  42. Ladier J, Dreyfus P, Reboul D (2007) La place du hêtre en région méditerranéenne. RDV techniques ONF HS 2:105–111Google Scholar
  43. Landmann G, Bréda N, Houllier F, Dreyer E, Flot JL (2003) Sécheresse et canicule de l’été 2003: quelles conséquences pour les forêts françaises? Rev For Fra LV-4:299–308Google Scholar
  44. Lebourgeois F (2007) Climatic signal in annual growth variation of silver fir (Abies alba Mill.) and spruce (Picea abies Karst.) from the French permanent plot network (RENECOFOR). Ann For Sci 64:333–343CrossRefGoogle Scholar
  45. Lebourgeois F, Bréda N, Ulrich E, Granier A (2005) Climate-tree-growth relationships of European beech (Fagus sylvatica L.) in the French permanent plot network (RENECOFOR). Trees 19:385–401CrossRefGoogle Scholar
  46. Lenoir J, Gégout JC, Marquet PA, de Ruffray P, Brisse H (2008) A significant upward shift in plant species optimum elevation during the 20th century. Science 320:1768–1771PubMedCrossRefGoogle Scholar
  47. Manetti MC, Cutini A (2006) Tree-ring growth of silver fir (Abies alba Mill.) in two stands under different silvicultural systems in central Italy. Dendrochronologia 23:145–150CrossRefGoogle Scholar
  48. Meehl GA, Tebaldi C (2004) More intense, more frequent, and longer lasting heat waves in the 21st century. Science 305:994–997PubMedCrossRefGoogle Scholar
  49. Menzel A, Fabian P (1999) Growing season extended in Europe. Nature 397:659–660CrossRefGoogle Scholar
  50. Ohlemüller R, Gritti ES, Sykes MT, Thomas CD (2006) Quantifying components of risk for European woody species under climate change. Glob Change Biol 12:1788–1799. doi: 10.1111/j.1365-2486.2006.01231.x CrossRefGoogle Scholar
  51. Paulsen J, Weber UM, Körner C (2000) Tree growth near treeline: abrupt or gradual reduction with altitude? Arct Antarct Alp Res 32:14–20CrossRefGoogle Scholar
  52. Pedersen BS (1998) The role of stress in the mortality of Midwestern oaks as indicated by growth prior to death. Ecology 79:79–93CrossRefGoogle Scholar
  53. Peñuelas J, Boada M (2003) A global change-induced biome shift in the Montseny mountains (NE Spain). Glob Change Biol 9:131–140. doi: 10.1046/j.1365-2486.2003.00566.x CrossRefGoogle Scholar
  54. Pichler P, Oberhuber W (2007) Radial growth response of coniferous forest trees in an inner Alpine environment to heat-wave in 2003. For Ecol Manag 242:688–699. doi: 10.1016/j.foreco.2007.02.007 CrossRefGoogle Scholar
  55. Pinto PE, Gégout JC, Hervé JC, Dhôte JF (2007) Changes in environmental controls on the growth of Abies alba Mill. in the Vosges Mountains, north-eastern France, during the 20th century. Glob Ecol Biogeogr 16:472–484CrossRefGoogle Scholar
  56. Piovesan G, Biondi F, Di Filippo A, Alessandrini A, Maugeri M (2008) Drought-driven growth reduction in old beech (Fagus sylvatica) forests of the central Apennines, Italy. Glob Change Biol 14:1265–1281CrossRefGoogle Scholar
  57. Rebetez M, Mayer H, Dupont O, Schindler D, Gartner K, Kropp JP, Menzel A (2006) Heat and drought 2003 in Europe : a climate synthesis. Ann For Sci 63:569–577. doi: 10.1051/forest:2006043 CrossRefGoogle Scholar
  58. Rolland C, Desplanque C, Michalet R, Schweingruber FH (2000) Extreme tree-rings in Spruce (Picea abies Karst.) and Fir (Abies alba Mill.) stands in relation to climate, site, and space in the southern French and Italian Alps. Arct Antarct Alp Res 32:1–13CrossRefGoogle Scholar
  59. Sarris D, Christodoulakis D, Körner C (2007) Recent decline in precipitation and tree growth in the eastern Mediterranean. Glob Change Biol 13:1187–1200. doi: 10.1111/j.1365-2486.2007.01348.x CrossRefGoogle Scholar
  60. Schär C, Vidale PL, Lüthi D, Frei C, Häberli C, Liniger MA, Appenzeller C (2004) The role of increasing temperature variability in European summer heatwaves. Nature 427:332–336PubMedCrossRefGoogle Scholar
  61. Selås V, Piovesan G, Adams JM, Bernabei M (2002) Climatic factors controlling reproduction and growth of Norway spruce in southern Norway. Can J For Res 32:217–225CrossRefGoogle Scholar
  62. Skomarkova MV, Vaganov EA, Mund M, Knohl A, Linke P, Boerner A, Schulze ED (2006) Inter-annual and seasonal variability of radial growth, wood density and carbon isotope ratios in tree rings of beech (Fagus sylvatica) growing in Germany and Italy. Trees 20:571–586CrossRefGoogle Scholar
  63. Stokes A, Ghani MA, Salin F, Danjon F, Jeannin H, Berthier S, Kokutse AD, Frochot H (2007) Root morphology and strain distribution during tree failure on mountain slopes. In: Stokes A (ed) Eco- and ground bio-engineering: the use of vegetation to improve slope stability. Development in Plant and Soil Sciences. Springer, Netherlands, pp 165–173CrossRefGoogle Scholar
  64. Theurillat JP, Guisan A (2002) Potential impact of climate change on vegetation in the European Alps: a review. Clim Change 50:77–109CrossRefGoogle Scholar
  65. Zweifel R, Zimmermann L, Zeugin F, Newbery DM (2006) Intra-annual radial growth and water relations of trees: implications towards a growth mechanism. J Exp Bot 57:1445–1459. doi: 10.1093/jxb/erj125 PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  1. 1.INRA, URFM, Ecologie des Forêts MéditerranéennesAvignon Cedex 9France

Personalised recommendations