Advertisement

Trees

, Volume 25, Issue 2, pp 253–264 | Cite as

Effects of environmental factors on pollen production in anemophilous woody species

  • Athanasios Damialis
  • Christina Fotiou
  • John M. Halley
  • Despoina Vokou
Original Paper

Abstract

The aim of this study was to estimate the amount of pollen produced by anemophilous woody taxa with allergenic properties and with considerable contribution in the concentration of pollen in the air of a Mediterranean city (Thessaloniki, Greece). The taxa selected are Corylus avellana, Cupressus sempervirens var. horizontalis and var. pyramidalis, Olea europaea and Platanus orientalis; each was studied in more than one sampling stations differing in elevation, direction or both. O. europaea produced the highest number of pollen grains per flower (1.3 × 105 ± 0.1 × 105) and P. orientalis the highest per inflorescence (3.3 × 106 ± 0.2 × 106). At the level of crown, pollen grains produced were of the order of 109 per surface/volume unit for O. europaea and the two C. sempervirens varieties; for the other two taxa, they were of the order of 106. Pollen production was lower at higher elevation and northern direction and depended on the size of the floral unit sampled (flower for O. europaea, inflorescence for all other species): the bigger the floral unit, the more pollen it contained. Our results and reports from other areas, where C. sempervirens and O. europaea grow, show that these two Mediterranean species produce comparable amounts of pollen at the levels of inflorescence or flower, respectively, wherever they occur.

Keywords

Airborne pollen Climate change Forest species Mediterranean vegetation Pollen dynamics Reproductive output 

Notes

Acknowledgments

This research was financially supported by the Operational Programme ‘Education and Initial Vocational Training’ (PYTHAGORAS II).

References

  1. Allison TD (1990) Pollen production and plant density affect pollination and seed production in Taxus canadensis. Ecology 7:516–522CrossRefGoogle Scholar
  2. Bera SK (1990) Palynology of Shorea robusta (Dipterocarpaceae) in relation to pollen production and dispersal. Grana 29:251–255CrossRefGoogle Scholar
  3. Beri SM, Anand SC (1971) Factors affecting pollen shedding capacity in wheat. Euphytica 20:327–332CrossRefGoogle Scholar
  4. Beyer WH (1984) Standard mathematical tables, 27th edn. CRC Press, Boca RatonGoogle Scholar
  5. Bhattacharya A, Mondal S, Mandal S (1999) Entomophilous pollen incidence with reference to atmospheric dispersal in eastern India. Aerobiologia 15:311–315CrossRefGoogle Scholar
  6. Bricchi E, Frenguelli G, Mincigrucci G (2000) Experimental results about Platanus pollen deposition. Aerobiologia 16:347–352CrossRefGoogle Scholar
  7. Campbell DR, Halama KJ (1993) Resource and pollen limitations to lifetime seed production in a natural plant population. Ecology 74:1043–1051CrossRefGoogle Scholar
  8. Cruden RW (1977) Pollen–ovule ratios. A conservative indicator of breeding systems in flowering plants. Evolution 31:32–46CrossRefGoogle Scholar
  9. Cuevas J, Polito VS (2004) The role of staminate flowers in the breeding system of Olea europaea (Oleaceae): an andromonoecious, wind-pollinated taxon. Ann Bot 93:547–553PubMedCrossRefGoogle Scholar
  10. Damialis A (2010) Patterns of pollen production and atmospheric circulation in the area of Thessaloniki, PhD dissertation. Aristotle University of Thessaloniki [in Greek with English summary]Google Scholar
  11. Damialis A, Halley JM, Gioulekas D, Vokou D (2007) Long-term trends in atmospheric pollen levels in the city of Thessaloniki, Greece. Atmos Environ 41:7011–7021CrossRefGoogle Scholar
  12. Davarynejad GH, Szabó Z, Nyéki J, Szabó T (2008) Phenological stages, pollen production level, pollen viability and in vitro germination capability of some sour cherry cultivars. Asian J Plant Sci 7:672–676CrossRefGoogle Scholar
  13. de Vries APh (1971) Flowering biology of wheat, particularly in view of hybrid seed production. A review. Euphytica 20:152–170CrossRefGoogle Scholar
  14. de Vries APh (1974) Some aspects of cross-pollination in wheat (Triticum aestivum L.) Anther length and number of pollen grains per anther. Euphytica 23:11–19CrossRefGoogle Scholar
  15. Díaz de la Guardia C, Alba F, de Linares C, Nieto-Lugilde D, López Caballero J (2006) Aerobiological and allergenic analysis of Cupressaceae pollen in Granada (Southern Spain). J Invest Allerg Clin Immunol 16:24–33Google Scholar
  16. Faegri K, Iversen J (1989) In: Faegri K, Kalland PE, Krzywinski K (eds) Textbook of pollen analysis, 4th edn. Wiley, ChichesterGoogle Scholar
  17. Ferrara G, Camposeo S, Palasciano M, Godini A (2007) Production of total and stainable pollen grains in Olea europaea L. Grana 46:85–90CrossRefGoogle Scholar
  18. Fotiou C, Damialis A, Krigas N, Halley JM, Vokou D (2010) Parietaria judaica flowering phenology, pollen production, viability and atmospheric circulation, and expansive ability in the urban environment: impacts of environmental factors. Int J Biometeorol (in press)Google Scholar
  19. Fumanal B, Chauvel B, Bretagnolle F (2007) Estimation of pollen and seed production of common ragweed in France. Ann Agric Environ Med 14:233–236PubMedGoogle Scholar
  20. Giantomasi MA, Roig Juñent FA, Villagra PE, Srur AM (2009) Annual variation and influence of climate on the ring width and wood hydrosystem of Prosopis flexuosa DC trees using image analysis. Trees 23:117–126CrossRefGoogle Scholar
  21. Gioulekas D, Papakosta D, Damialis A, Spieksma FThM, Giouleka P, Patakas D (2004) Allergenic pollen records (15 years) and sensitization in patients with respiratory allergy in Thessaloniki, Greece. Allergy 59:178–184CrossRefGoogle Scholar
  22. Gomez-Casero MT, Hidalgo PJ, García-Mozo H, Domínguez E, Galán C (2004) Pollen biology in four Mediterranean Quercus species. Grana 43:22–30CrossRefGoogle Scholar
  23. Guardia R, Belmonte J (2004) Phenology and pollen production of Parietaria judaica L. in Catalonia (NE Spain). Grana 43:57–64CrossRefGoogle Scholar
  24. Hall AJ, Vilella F, Trapani N, Chimenti C (1982) The effects of water stress and genotype on the dynamics of pollen-shedding and silking in maize. Field Crops Res 5:349–363CrossRefGoogle Scholar
  25. Hidalgo PJ, Galán C, Domínguez E (1999) Pollen production of the genus Cupressus. Grana 38:296–300CrossRefGoogle Scholar
  26. Hill SJ, Stephenson DW, Taylor BK (1985) Almond pollination studies: pollen production and viability, flower emergence and cross-pollination tests. Austr J Exp Agr 25:697–704CrossRefGoogle Scholar
  27. Hyde HA, Williams DA (1946) Studies in atmospheric pollen. III. Pollen production and pollen incidence in ribwort plantain (Plantago lanceolata L.). New Phytol 45:271–277CrossRefGoogle Scholar
  28. Jablonski LM, Wang XZ, Curtis PS (2002) Plant reproduction under elevated CO2 conditions: a meta-analysis of reports on 79 crop and wild species. New Phytol 156:9–26CrossRefGoogle Scholar
  29. Jato V, Rodríguez-Rajo FJ, Aira MJ (2007a) Use of phenological and pollen-production data for interpreting atmospheric birch pollen curves. Ann Agric Environ Med 14:271–280PubMedGoogle Scholar
  30. Jato V, Rodríguez-Rajo FJ, Aira MJ (2007b) Use of Quercus ilex subsp. ballota phenological and pollen-production data for interpreting Quercus pollen curves. Aerobiologia 23:91–105CrossRefGoogle Scholar
  31. Joppa IR, McNeal FH, Berg MA (1968) Pollen production and pollen shedding of hard red spring (Triticum aestivum L. em. Thell.) and durum (T. durum Desf.) wheats. Crop Sci 8:487–490CrossRefGoogle Scholar
  32. Khanduri VP, Sharma CM (2002a) Pollen production, microsporangium and pollen flow in Himalayan cedar (Cedrus deodara Roxb. Ex D. Don). Ann Bot 89:587–593PubMedCrossRefGoogle Scholar
  33. Khanduri VP, Sharma CM (2002b) Pollen productivity variations. Pollen–ovule ratio and sexual selection in Pinus roxburghii. Grana 41:29–38CrossRefGoogle Scholar
  34. Khanduri VP, Sharma CM (2009) Cyclic pollen production in Cedrus deodara. Sex Plant Reprod 22:53–61PubMedCrossRefGoogle Scholar
  35. LaDeau SL, Clark JS (2006) Pollen production by Pinus taeda growing in elevated atmospheric CO2. Funct Ecol 20:541–547CrossRefGoogle Scholar
  36. Larese Filon F, Bosco A, Barbina P, Sauli ML, Rizzi Longo L (2000) Betulaceae and Corylaceae in Trieste (NE-Italy): Aerobiological and clinical data. Aerobiologia 16:87–91CrossRefGoogle Scholar
  37. Lau TC, Stephenson AG (1993) Effects of soil-nitrogen on pollen production, pollen grain size, and pollen performance in Cucurbita pepo (Cucurbitaceae). Am J Bot 80:763–768CrossRefGoogle Scholar
  38. Levanič T, Gričar J, Gagen M, Jalkanen R, Loader NJ, McCarroll D, Oven P, Robertson I (2009) The climate sensitivity of Norway spruce [Picea abies (L.) Karst.] in the southeastern European Alps. Trees 23:169–180CrossRefGoogle Scholar
  39. Martín-Benito D, Cherubini P, del Río M, Cañellas I (2008) Growth response to climate and drought in Pinus nigra Arn. trees of different crown classes. Trees 22:363–373CrossRefGoogle Scholar
  40. Matis KG (1994) Forest biometry. ΙΙ. Dendrometry. G. Dedousis, Thessaloniki, pp 105–107 (in Greek)Google Scholar
  41. McKone MJ (1990) Characteristics of pollen production in a population of New Zealand snow-tussock grass (Chionochloa pallens Zotov). New Phytol 116:555–562CrossRefGoogle Scholar
  42. Moe D (1998) Pollen production of Alnus incana at its south Norwegian altitudinal ecotone. Preliminary observations. Grana 37:35–39CrossRefGoogle Scholar
  43. Mondal AK, Mandal S (1998) Pollen production in some terrestrial angiosperms. Curr Sci 74:906–910Google Scholar
  44. Moore PD, Webb JA, Collinson ME (1991) Pollen analysis, 2nd edn. Blackwell Scientific Publications, London, pp 42–46 and 181–182Google Scholar
  45. Oliveira G, Correia O, Martins-Loução MA, Catarino FM (1994) Phenological and growth patterns of the Mediterranean oak Quercus suber L. Trees 9:41–46CrossRefGoogle Scholar
  46. Palmer RG, Albertsen MC, Heer H (1978) Pollen production in soybeans with respect of genotype, environment and stamen position. Euphytica 27:427–433CrossRefGoogle Scholar
  47. Prieto-Baena JC, Hidalgo PJ, Domínguez E, Galán C (2003) Pollen production in the Poaceae family. Grana 42:153–160CrossRefGoogle Scholar
  48. Rogers CA (1993) Application of aeropalynological principles in paleoecology. Rev Palaeobot Palynol 79:133–140CrossRefGoogle Scholar
  49. Rogers CA, Wayne PM, Macklin EA, Muilenberg ML, Wagner CJ, Epstein PR, Bazzaz FA (2006) Interaction of the onset of spring and elevated atmospheric CO2 on ragweed (Ambrosia artemisiifolia L.) pollen production. Environ Health Perspect 114:865–869PubMedCrossRefGoogle Scholar
  50. Sapra VT, Hughes JL (1975) Pollen production in hexaploid triticale. Euphytica 24:237–243CrossRefGoogle Scholar
  51. Shivanna KR, Rangaswamy NS (1992) Pollen biology. A laboratory manual. Springer, BerlinGoogle Scholar
  52. Spalik K, Woodell SRJ (1994) Regulation of pollen production in Anthriscus sylvestris, an andromonoecious species. Int J Plant Sci 155:750–754CrossRefGoogle Scholar
  53. Subba Reddi C, Reddi NS (1986) Pollen production in some anemophilous angiosperms. Grana 25:55–61CrossRefGoogle Scholar
  54. Suzuki AA, Suzuki M (2009) Why do lower order branches show greater shoot growth than higher order branches? Considering space availability as a factor affecting shoot growth. Trees 23:69–77Google Scholar
  55. Tormo Molina R, Muñoz Rodríguez A, Silva Palacios I, Gallardo López F (1996) Pollen production in anemophilous trees. Grana 35:38–46CrossRefGoogle Scholar
  56. Vidal-Martínez VA, Clegg MD, Johnson BE, Osuna-García JA, Coutiño-Estrada B (2004) Phenotypic plasticity and pollen production components in maize. Agrociencia 38:273–284Google Scholar
  57. Wan S, Yuan T, Bowdish S, Wallace L, Russell SD, Luo Y (2002) Response of an allergenic species, Ambrosia psilostachya (Asteraceae), to experimental warming and clipping: implications for public health. Am J Bot 89:1843–1846CrossRefGoogle Scholar
  58. Wayne P, Foster S, Connolly J, Bazzaz F, Epstein P (2002) Production of allergenic pollen by ragweed (Ambrosia artemisiifolia L.) is increased in CO2-enriched atmospheres. Ann Allerg Asthma Immunol 88:279–282CrossRefGoogle Scholar
  59. Westgate ME, Lizaso J, Batchelor W (2003) Quantitative relationships between pollen shed density and grain yield in maize. Crop Sci 43:934–942CrossRefGoogle Scholar
  60. Ziska LH, Caulfield FA (2000) Rising CO2 and pollen production of common ragweed (Ambrosia artemisiifolia), a known allergy-inducing species: implications for public health. Aust J Plant Physiol 27:893–898Google Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • Athanasios Damialis
    • 1
  • Christina Fotiou
    • 1
  • John M. Halley
    • 2
  • Despoina Vokou
    • 1
  1. 1.Department of Ecology, School of BiologyAristotle UniversityThessalonikiGreece
  2. 2.School of Biological Applications and TechnologiesUniversity of IoanninaIoanninaGreece

Personalised recommendations