, Volume 24, Issue 6, pp 975–992 | Cite as

Adventitious rooting of conifers: influence of physical and chemical factors

  • Carla Ragonezi
  • Krystyna Klimaszewska
  • Mário Rui Castro
  • Mónica Lima
  • Paulo de Oliveira
  • Maria Amely ZavattieriEmail author


In conifers, vegetative propagation of superior genotypes is the most direct means for making large genetic gains, because it allows a large proportion of genetic diversity to be captured in a single cycle of selection. There are two aims of vegetative propagation, namely large-scale multiplication of select genotypes and production of large numbers of plants from scarce and costly seed that originates from controlled seed orchard pollinations. This can be achieved, in some species, either through rooted cuttings or rooted microshoots, the latter regenerated through tissue culture in vitro. Thus far, both strategies have been used but often achieved limited success mainly because of difficult and inefficient rooting process. In this overview of technology, we focus on the progress in defining the physical and chemical factors that help the conifer cuttings and microshoots to develop adventitious roots. These factors include plant growth regulators, carbohydrates, light quality, temperature and rooting substrates/media as major variables for development of reliable adventitious rooting protocols for different conifer species.


Cuttings Gymnosperms In vitro culture Micropropagation Microshoots 



1-Aminocyclopropane-1-carboxylic acid


Aminooxyacetic acid


Adventitious root formation






Cyclic guanosine monophosphate


Cool white light


Gupta and Durzan (1985)


Gibberellic acid

GD medium

Gresshoff and Doy (1972)




Indole-3-acetic acid


Indole-3-butyric acid

L9 medium

Ewald (2007b)

LP medium

Quorin and Lepoivre (1977)


Mitogen-activated protein kinase

MS medium

Murashige and Skoog (1962)


Naphthalene acetic acid


Plant growth regulator


Photosynthetic photon flux densities

PS medium

Pinus strobus medium-Tang and Newton (2005a)




Red-rich daylight

RIM medium

Abo El-Nil (1982)

RW medium

Risser and White (1964)

SH medium

Schenk and Hildebrandt (1972)



TE medium

Tang et al. (1998)



WPM medium

Lloyd and McCown (1981)


Warm white



This work was supported by FCT Portugal: PTDC/AGR-CFL/71437/2006 Analysis and Mastering of Root Growth Signalling by Ectomycorrhizal Fungi on P. pinea L. Microshoot Cultures. Ms. P. Cheers (Canadian Forest Service—Laurentian Forestry Centre) is gratefully acknowledged for English editing.


  1. Abo El-Nil MM (1982) Method for asexual reproduction of coniferous trees. US Patent No. 4,353,184Google Scholar
  2. Alcantara GB, Fortes Ribas LL, Rioyei HA, Zuffellato Ribas KC, Soares Koehler H (2007) Efeito da idade da muda e da estação do ano no enraizamento de miniestacas de Pinus taeda L. Rev Árvore [online] 31:399–404. doi: 10.1590/S0100-67622007000300005 Google Scholar
  3. Alonso P, Moncaléan P, Fernández B, Rodríguez A, Centeno ML, Ordás RJ (2006) An improved micropropagation protocol for stone pine (Pinus pinea L.). Ann For Sci 63:879–885. doi: 10.1051/forest:2006071 CrossRefGoogle Scholar
  4. Álvarez JM, Majada J, Ordás RJ (2009) An improved micropropagation protocol for maritime pine (Pinus pinaster Ait.) isolated cotyledons. Forestry 82:175–184. doi: 10.1093/forestry/cpn052 CrossRefGoogle Scholar
  5. Anderson U, Ievinsh G (2002) Changes of morphogenic competence in mature Pinus sylvestris L. buds in vitro. Ann Bot 90:293–298. doi: 10.1093/aob/mcf176 CrossRefGoogle Scholar
  6. Arteca RN (1995) Plant growth substances principles and applications. Chapman and Hall, New York, p 288Google Scholar
  7. Beyer EM (1976) A potent inhibitor of ethylene action in plants. Plant Physiol 58:268–271PubMedCrossRefGoogle Scholar
  8. Biddington NL (1992) The influence of ethylene in plant tissue culture. Plant Growth Regul, The Hague 11:173–187CrossRefGoogle Scholar
  9. Bielenin M (2003) Rooting and gas exchange of conifer cuttings treated with indolebutyric acid. J Fruit Ornam Plant Res 11:99–105Google Scholar
  10. Blazkova A, Sotta B, Tranvan H, Maldiney R, Bonnet M, Einhorn J, Kerhoas L, Miginiac E (1997) Auxin metabolism and rooting in young and mature clones of Sequoia sempervirens. Physiol Plant 99:73–80CrossRefGoogle Scholar
  11. Bollmark M, Eliasson L (1990) Ethylene accelerates the breakdown of cytokinins and thereby stimulates rooting in Norway spruce hypocotyl cuttings. Physiol Plant 80:534–540. doi: 10.1111/j.1399-3054.1990.tb05675.x CrossRefGoogle Scholar
  12. Brinker M, van Zyl L, Liu W, Craig D, Sederoff RR, Clapham DH, von Arnold S (2004) Microarray analyses of gene expression during adventitious root development in Pinus contorta. Plant Physiol 135:1526–1539. doi: 10.1104/pp.103.032235 PubMedCrossRefGoogle Scholar
  13. Browne RD, Davidson CG, Steeves TA, Dunstan DI (1996) Effects of ortet age on adventitious rooting of jack pine (Pinus banksiana) long-shoot cuttings. Can J For Res 27:91–96. doi: 10.1139/cjfr-27-1-91 CrossRefGoogle Scholar
  14. Browne RD, Davidson CG, Enns SM (2000) Improvements in asexual multiplication procedures for jack pine (Pinus banksiana). New For 19:259–278Google Scholar
  15. Burkhart LF, Meyer MM Jr (1991) The gibberellin synthesis inhibitors, ancymidol and flurprimidol, promote in vitro rooting of white pine microshoots. Plant Cell Rep 10:475. doi: 10.1007/BF00233818 CrossRefGoogle Scholar
  16. Campbell RA, Durzan DJ (1975) Induction of multiple buds and needles in tissue cultures of Picea glauca. Can J Bot 53:1652–1657CrossRefGoogle Scholar
  17. Capuana M, Giannini R (1995) In vitro plantlet regeneration from embryonic explants of Pinus pinea L. In Vitro Cell Dev Biol Plant 31:202–206. doi: 10.1007/BF02632022 CrossRefGoogle Scholar
  18. Chang SH, Ho CK, Chen ZZ, Tsay JY (2001) Micropropagation of Taxus mairei from mature trees. Plant Cell Rep 20:496–502. doi: 10.1007/s002990100362 CrossRefGoogle Scholar
  19. Chee PP (1995) Organogenesis in Taxus brevifolia tissue cultures. Plant Cell Rep 14:560–565. doi: 10.1007/BF00231938 Google Scholar
  20. Cheng TY (1975) Adventitious bud formation in culture of Douglas fir (Pseudotsuga menziesii (Mirb.) Franco). Plant Sci Lett 5:97–102CrossRefGoogle Scholar
  21. Cheng TY (1977) Factors affecting adventitious bud formation of cotyledon culture of Douglas fir. Plant Sci Lett 9:179–187CrossRefGoogle Scholar
  22. Cheng TY, Voqui TH (1977) Regeneration of Douglas fir plantlets through tissue culture. Science 198:306–307. doi: 10.1126/science.198.4314.306 PubMedCrossRefGoogle Scholar
  23. Christianson ML, Warnick DA (1983) Competence and determination in the process of in vitro shoot organogenesis. Dev Biol 95:188–193CrossRefGoogle Scholar
  24. Clark DG, Gubrium EK, Barrett JE, Nell TA, Klee HJ (1999) Root formation in ethylene-insensitive plants. Plant Physiol 121:53–59PubMedCrossRefGoogle Scholar
  25. Copes DL, Mandel NL (2000) Effect of IBA and NAA treatments on rooting Douglas-fir stem cuttings. New For 20:249–257. doi: 10.1023/A:1006752717350 Google Scholar
  26. Corrêa LR, Fett-Neto AG (2004) Effects of temperature on adventitious root development in microcuttings of Eucalyptus saligna Smith and Eucalyptus globulus Labill. J Therm Biol 29:315–324. doi: 10.1016/j.jtherbio.2004.05.006 CrossRefGoogle Scholar
  27. Corrêa LR, Paim DC, Schwambach J, Fett-Neto AG (2005) Carbohydrates as regulatory factors in the rooting of Eucalyptus saligna Smith and Eucalyptus globulus Labill. Plant Growth Regul 45:63–73Google Scholar
  28. Couée I, Hummel I, Sulmon C, Gouesbet G, El Amrani A (2004) Involvement of polyamines in root development. Plant Cell Tiss Org Cult 76:1–10CrossRefGoogle Scholar
  29. Davidescu VE, Caretu G, Madjar RM, Stanica F, Peticila AG, Dumitrascu M (2003) The influence of substrate and cutting period on the propagation of some ornamental species. Acta Hortic 608:273–277. Google Scholar
  30. Davis TD, Haissig BE (1990) Chemical control of adventitious root formation in cuttings. Plant Growth Regul Soc Am Q 18:1–18Google Scholar
  31. Davis TD, Haissig BE, Sankhla N (1988) Adventitious root formation in cuttings. Adv Plant Sci 2:174–182Google Scholar
  32. De Klerk GJ, Ter Brugge J, Marinova S (1997) Effectiveness of indoleacetic acid, indolebutyric acid and naphthaleneacetic acid during adventitious root formation in vitro in Malus ‘Jork 9’. Plant Cell Tissue Organ Cult 49:39–44. doi: 10.1023/A:1005850222973 CrossRefGoogle Scholar
  33. De Klerk GJ, Van der Krieken W, De Jong JC (1999) The formation of adventitious roots: new concepts, new possibilities. In Vitro Cell Dev Biol Plant 35:189–199. doi: 10.1007/s11627-999-0076-z CrossRefGoogle Scholar
  34. De Silva H, Mc Kenzie BA, Bloomberg M (2005) Indolebutyric acid and wounding induced rooting in callused, non-rooted Leyland cypress (×Cupressocyparis leylandii) stem cuttings. NZ J Crop Hortic Sci 33:407–412. doi: 0014-0671/05/3304-0407 CrossRefGoogle Scholar
  35. Diaz-Sala C, Hutchison K, Goldfarb B, Greenwood MS (1996) Maturation-related loss of rooting competence by loblolly pine stem cuttings: the role of auxin transport, metabolism and tissue sensitivity. Physiol Plant 97:481–490. doi: 10.1111/j.1399-3054.1996.tb00507.x CrossRefGoogle Scholar
  36. Drake PMW, John A, Power JB, Davey MR (1997) Cytokinin pulse-mediated shoot organogenesis from cotyledons of Sitka spruce [Picea sitchensis (Bong.) Carr.] and high frequency in vitro rooting of shoots. Plant Cell Tissue Organ Cult 50:147–151. doi: 10.1023/A:1005998812774 CrossRefGoogle Scholar
  37. Druart PH, Kevers CL, Gaspar TH (1982) In vitro promotion of root formation by apple shoots through darkness effect on endogenous phenols and peroxidases. Z Pflazen Physiol 108:429–436Google Scholar
  38. Ewald D (2007a) Micropropagation of Larix species via organogenesis. In: Jain SM, Häggman H (eds) Protocols for micropropagation of woody trees and fruits. Springer, Dordrecht, pp 125–136. doi: 10.1007/978-1-4020-6352-712 CrossRefGoogle Scholar
  39. Ewald D (2007b) Micropropagation of yew (Taxus baccata L.). In: Jain SM, Häggman H (eds) Protocols for micropropagation of woody trees and fruits. Springer, Dordrecht, pp 117–123. doi: 10.1007/s002990100362 CrossRefGoogle Scholar
  40. Farjon A (1998) World checklist and bibliography of conifers. Royal Botanical Gardens, KewGoogle Scholar
  41. Faye M, Ourry A, Saidali-Savi C, Dargent R, Boucaud J, David A (1989) Effects of glutamine and K-glutamate on assimilation of nitrate during auxin treatment for root formation in vitro (Pinus pinaster). Physiol Plant 76:277–282. doi: 10.1111/j.1399-3054.1989.tb06191.x Google Scholar
  42. Fett-Neto AG, Fett JP, Goulart LWV, Pasquali G, Termignoni RR, Ferreira AG (2001) Distinct effects of auxin and light on adventitious root development in Eucalyptus saligna and Eucalyptus globulus. Tree Physiol 21:457–464. doi: 10.1093/treephys/21.7.457 PubMedGoogle Scholar
  43. Flygh G, Grönroos R, Hogberg KA, von Arnold S (1998) Development and growth of plantlets of Pinus contorta regenerated from adventitious buds. Scand J For Res 13:331–339. doi: 10.1080/02827589809382992 CrossRefGoogle Scholar
  44. Gahan PB (2007) Totipotency and the cell cycle. In: Jain SM, Häggman H (eds) Protocols for micropropagation of woody trees and fruits. Springer, Dordrecht, pp 3–14CrossRefGoogle Scholar
  45. Gaspar T, Coumans M (1987) Root formation. In: Bonga JM, Durzan DJ (eds) Cell and tissue culture in forestry. Martinus Nijhoff Publishers, The Hague, pp 202–217Google Scholar
  46. Goldfarb B, Hackett WP, Furnier GR, Mohn CA, Plietzsc A (1998) Adventitious root initiation in hypocotyls and epicotyl cuttings of eastern white pine (Pinus strobus) seedlings. Physiol Plant 102:513–522. doi: 10.1034/j.1399-3054.1998.1020405.x CrossRefGoogle Scholar
  47. Gómez MP, Segura J (1994) Axillary shoot proliferation in cultures of explants from mature Juniperus oxycedrus trees. Tree Physiol 15:625–628. doi: 10.1093/treephys/15.9.625 Google Scholar
  48. Greenwood MS, Hutchison KW (1993) Maturation as a developmental process. In: Ahuja MR, Libby WJ (eds) Clonal forestry. I. Genetics and biotechnology. Springer, New York, pp 14–33Google Scholar
  49. Greenwood MS, Weir RJ (1994) Genetic variation in rooting ability of loblolly pine cuttings: effects of auxin and family on rooting by hypocotyl cuttings. Tree Physiol 15:41–45. doi: 10.1093/treephys/15.1.41 CrossRefGoogle Scholar
  50. Greenwood MS, Cub K, Xu F (2001) Response to auxin changes during maturation-related loss of adventitious rooting competence in loblolly pine (Pinus taeda) stem cuttings. Physiol Plant 111:373–380. doi: 10.1111/j.1399-3054.2001.1110315.x PubMedCrossRefGoogle Scholar
  51. Gresshoff PM, Doy CH (1972) Development and differentiation of haploid Lycopersicon esculentum (tomato). Plant 17:161–170. doi: 10.1007/BF00387721 CrossRefGoogle Scholar
  52. Gupta PK, Durzan DJ (1985) Shoot multiplication from mature Douglas-fir and sugar pine. Plant Cell Rep 4:177–179CrossRefGoogle Scholar
  53. Häggman H, Aronen T, Stomp A-M (1996) Early-flowering Scots pines through tissue culture for accelerating tree breeding. Theor Appl Genet 93:840–848CrossRefGoogle Scholar
  54. Haissig BE (1982) Carbohydrate and amino acid concentrations during adventitious root primordium development in Pinus banksiana Lamb. cuttings. For Sci 28:813–821Google Scholar
  55. Haissig BE (1990) Reduced irradiance and applied auxin influence carbohydrate relations in Pinus banksiana cuttings during propagation. Physiol Plant 78:455–461. doi: 10.1111/j.1399-3054.1990.tb09063.x CrossRefGoogle Scholar
  56. Hamann A (1998) Adventitious root formation in cuttings of loblolly pine (Pinus taeda L.): developmental sequence and effects of maturation. Trees 12:175–180. doi: 10.1007/PL00009707 Google Scholar
  57. Hansen J, Ernstsen A (1982) Seasonal changes in adventitious root formation in hypocotyl cuttings of Pinus sylvestris: influence of photoperiod during stock plant growth and of indolebutyric acid treatment of cuttings. Physiol Plant 54:99–106CrossRefGoogle Scholar
  58. Harry IS, Thompson MR, Lu CY, Thorpe TA (1987) In vitro plantlet formation from embryonic explants of eastern white cedar (Thuja occidentalis L.). Tree Physiol 3:273–283. doi: 10.1093/treephys/3.3.273 PubMedGoogle Scholar
  59. Hartmann HT, Kester DE (1983) Anatomical and physiological basis of propagation by cuttings. In: Plant propagation: principles and practices. Prentice-Hall Inc., Englewood Cliffs, pp 235–297Google Scholar
  60. Hartmann HT, Kester DE, Davis FT Jr, Geneve RL (2002) Plant propagation: principles and practices, 7th edn. Prentice-Hall Inc., Englewood CliffsGoogle Scholar
  61. Henrique A, Campinhos EN, Ono EO, Pinho SZ (2006) Effect of plant growth regulators in the rooting of Pinus cuttings. Braz Arch Biol Technol 49:189–196CrossRefGoogle Scholar
  62. Högberg K (2005) Rooting response of late summer cuttings taken from Pinus sylvestris half-sib families. Scand J For Res 20:313–317. doi: 10.1080/02827580510036382 CrossRefGoogle Scholar
  63. Högberg K, Flygh G, Grönroos R, von Arnold S (2005) Field performance of Pinus contorta trees propagated vegetatively via adventitious buds. Scand J For Res 20:318–321. doi: 10.1080/02827580510036247 CrossRefGoogle Scholar
  64. Hutchison KW, Singer PB, McInnis S, Diaz-Sala C, Greenwood MS (1999) Expansins are conserved in conifers and expressed in hypocotyls in response to exogenous auxin. Plant Physiol 120:827–832PubMedCrossRefGoogle Scholar
  65. Hutzell MJ, Durzan DJ (1993) Improved aseptic germination and controlled growth for micropropagation of Douglas fir. In: Ahuja MR (ed) Micropropagation of woody plants. Kluwer, Dordrecht, pp 367–372Google Scholar
  66. Ingestad T (1979) Mineral nutrient requirements of Pinus sylvestris and Pinus abies seedlings. Physiol Plant 45:373–380CrossRefGoogle Scholar
  67. Ishii K, Hosoi Y, Maruyama E (2007) Micropropagation of Pinus armandii var. amamiana. In: Jain SM, Häggman H (eds) Protocols for micropropagation of woody trees and fruits. Springer, Dordrecht, pp 41–50. doi: 10.1007/978-1-4020-6352-7_5 CrossRefGoogle Scholar
  68. Kalia RK, Arya S, Kalia S, Arya ID (2007) Plantlet regeneration from fascicular buds of seedling shoot apices of Pinus roxburghii Sarg. Biol Planta 51:653–659. doi: 10.1007/s10535-007-0138-1 CrossRefGoogle Scholar
  69. Kaur-Sawhney R, Tiburcio AF, Atabella T, Galston AW (2003) Polyamines in plants: an overview. J Cell Mol Biol 2:1–12Google Scholar
  70. Klimaszewska K, Trontin J-F, Becwar MR, Devillard C, Park Y-S, Lelu-Walter M-A (2007) Recent progress in somatic embryogenesis of four Pinus spp. Glob Sci Books Tree For Sci Biotechnol 1:11–25Google Scholar
  71. Krouk G, Lacombe B, Bielach A, Perrine-Walker F, Malinska K, Mounier E et al (2010) Nirate-regulated auxin transport by NRT1.1 defines a mechanism for nutrient sensing in plants. Dev Cell 18:927–937. doi: 10.1016/j.devcel.20101.05.008 PubMedCrossRefGoogle Scholar
  72. Kumar PP, Lakshmanan P, Thorpe TA (1998) Regulation of morphogenesis in plant tissue culture by ethylene. In Vitro Cell Dev Biol Plant 34:94–103CrossRefGoogle Scholar
  73. Kummerow J (1966) Vegetative propagation of Pinus radiata by means of needle fascicles. For Sci 12:391–398Google Scholar
  74. Kunneman BPAM, Ruesink JB (1997) Interactions between light, temperature and CO2 in rooting of conifers cuttings. Acta Hortic 418:97–102. Google Scholar
  75. Lamhamedi MS, Tousignant D (2008) Clonal variations in Picea abies stock plants produced by somatic embryogenesis and their use in cutting propagation programs. In: IUFRO–CTIA 2008 joint conference—adaptation, breeding and conservation in the era of forest tree genomics and environmental change, Québec, QC, 25–28 August 2008Google Scholar
  76. Li M, Leung DWM (2000) Starch accumulation is associated with adventitious root formation in hypocotyl cuttings of Pinus radiata. J Plant Growth Regul 19:423–428. doi: 10.1007/s003440000020 Google Scholar
  77. Li SW, Xue L (2010) The interaction between H2O2 and NO, Ca2+, and cGMP, and MAPKs during adventitious rooting in mung bean seedlings. In Vitro Cell Dev Biol Plant 46:142–148. doi: 10.1007/s11627-009-9275-x CrossRefGoogle Scholar
  78. Li SW, Xue L, Xu S, Feng H, An L (2009) Mediators, genes and signaling in adventitious rooting. Bot Rev 75:230–247. doi: 10.1007/s12229-009-9029-9 CrossRefGoogle Scholar
  79. Libby WJ (1986) Clonal propagation. J For 84:37–45Google Scholar
  80. Lindroth AM, Saarikoski P, Flygh G, Clapham D, Grönroos R, Thelander M, Ronne H, von Arnold S (2001) Two sadenosylmethionine synthetase-encoding genes differentially expressed during adventitious root development in Pinus contorta. Plant Mol Biol 46:335–346. doi: 10.1023/A:1010637012528 PubMedCrossRefGoogle Scholar
  81. Lloyd G, McCown B (1981) Commercially feasible micropropagation of mountain laurel, Kalmia latifolia, by the use of shoot tip culture. Proc Plant Prop Soc 30:421–427Google Scholar
  82. López-Escamilla AL, Olguín-Santos LP, Márquez J, Chávez VM, Bye R (2000) Adventitious bud formation from mature embryos of Picea chihuahuana Martínez, an endangered Mexican spruce tree. Ann Bot 86:921–927. doi: 10.1006/anbo.2000.1257 CrossRefGoogle Scholar
  83. Loureiro J, Capelo A, Brito G, Rodriguez E, Silva S, Pinto G, Santos C (2007) Micropropagation of Juniperus phoenicea from adult plant explants and analysis of ploidy stability using flow cytometry. Biol Plant 51:7–14. doi: 10.1007/s10535-007-0003-2 CrossRefGoogle Scholar
  84. Martínez Pulido C, Harry IS, Thorpe TA (1990) In vitro regeneration of plantlets of Canary Island pine (Pinus canariensis). Can J For Res 20:1200–1211. doi: 10.1139/x90-159 CrossRefGoogle Scholar
  85. Martinez-Pastur G, Arena ME, Benavides MP, Eliasco E, Curvetto N (2007) Role of polyamines during in vitro rhizogenesis of Nothofagus nervosa using successive culture media. New For 34:83–93Google Scholar
  86. Martin-Tanguy J (2001) Metabolism and function of polyamines in plants: recent development (new approaches). Plant Growth Regul 34:135–148CrossRefGoogle Scholar
  87. Martin-Tanguy J, Carré M (1993) Polyamines in grapevine microcuttings cultivated in vitro: effects of amines and inhibitors of polyamine biosynthesis on polyamine levels and microcutting growth and development. Plant Growth Regul 13:269–280CrossRefGoogle Scholar
  88. Mazăre G, Dumitraş A, Zaharia D, Holonec L, Ceuca V, Timofte A (2007) The obtaining of Picea cultivars by cuttings. Bulletin of University of Agricultural Sciences and Veterinary Medicine, Cluj-Napoca. Horticulture 64:277–281Google Scholar
  89. McClelland MT, Smith MAL, Carothers ZB (1990) The effects of in vitro and ex vitro root initiation on subsequent microcutting root quality in three woody plants. Plant Cell Tissue Organ Cult 23:115–123CrossRefGoogle Scholar
  90. Menzies MI, Holden DG, Klomp BK (2001) Recent trends in nursery practice in New Zealand. New For 22:3–17. doi: 10.1023/A:1012027013173 Google Scholar
  91. Moe R, Andersen AS (1988) Stock plant environment and subsequent adventitious rooting. In: Davis TD, Haissig BE, Sankhla N (eds) Adventitious root formation in cuttings. Advances in plant sciences series, vol 2. Dioscorides Press, Portland, pp 214–234Google Scholar
  92. Mohammed GH, Vidaver WE (1988) Root production and plantlet development in tissue-cultured conifers. Plant Cell Tissue Organ Cult 14:137–160CrossRefGoogle Scholar
  93. Mohammed GH, Vidaver WE (1990) The influence of acclimatization treatment and plantlet morphology on early greenhouse performance of tissue-cultured Douglas fir [Pseudotsuga menziesii (Mirb) Franco]. Plant Cell Tissue Organ Cult 21:111–117. doi: 10.1007/BF00033429 CrossRefGoogle Scholar
  94. Moncousin CH (1991) Rooting of in vitro cuttings. In: Bajaj YPS (ed) Biotechnology in agriculture and forestry. Springer, Berlin, pp 231–261Google Scholar
  95. Mudge KW (1988) Effect of ethylene on rooting. In: Davis TD, Haissig BE, Sankhla N (eds) Adventitious root formation in cuttings. Advances in plant sciences series, vol 2. Dioscorides Press, Portland, pp 150–161Google Scholar
  96. Murashige T, Skoog F (1962) A revised medium for rapid growth and bio-assays with tobacco tissue cultures. Physiol Plant 15:473–497CrossRefGoogle Scholar
  97. Nandwani D, Kumaria S, Tandon P (2001) Micropropagation of Pinus kesiya Royle ex Gord (Khasi pine). Gartenbauwissenschaft 66:68–71Google Scholar
  98. Nicholson R (1984) Propagation notes Cedrus deodara ‘Shalimar’ and Calocedrus decurrens. Plant Prop 30:5–6Google Scholar
  99. Nicholson R, Garcia B, McDaniel B, MacRay C (1999) Observations on the propagation of Cupressus dupreziana Camus, an endemic Saharan Gymnosperm. Bot Gard Conserv News 3:49–50Google Scholar
  100. Niemi K, Scagel C, Häggman H (2004) Application of ectomycorrhizal fungi in vegetative propagation of conifers. Plant Cell Tissue Organ Cult 78:83–91. doi: 10.1023/B:TICU.0000020379.52514.72 CrossRefGoogle Scholar
  101. Nordström AC, Jacobs FA, Eliasson L (1991) Effect of exogenous indole-3-acetic acid and indole-3-butyric acid on internal levels of the respective auxins and their conjugation with aspartic acid during adventitious root formation in pea cuttings. Plant Physiol 96:856–861PubMedCrossRefGoogle Scholar
  102. Ordás RJ, Rodríguez A, Rodríguez R, Sánchez R (1985) Desarrollo de técnicas de cultivo “in vitro” para la micropropagación de variedades de manzana sidrera. Edafol Agrobiotecnol 43:905–917Google Scholar
  103. Ordás RJ, Alonso P, Cuesta C, Cortizo M, Rodríguez A, Fernández B (1999) Micropropagation of Pinus pinea L. In: Jain SM, Häggman H (eds) Protocols for micropropagation of woody trees and fruits. Springer, Dordrecht, pp 33–39Google Scholar
  104. Pâques LE, Cornu D (1991) Effect of vegetative propagation on field performance up to age 8 of hybrid larch (Larix × eurolepsis) clones. Ann Sci For 48:469–482CrossRefGoogle Scholar
  105. Parasharami VA, Poonawala IS, Nadgauda RS (2003) Bud break and plantlet regeneration in vitro from mature trees of Pinus roxburghii Sarg. Curr Sci 84:203–208Google Scholar
  106. Pijut PM (2000) Cedrus—the true cedars. J Arboric 26:218–224Google Scholar
  107. Prehn D, Serrano C, Mercado A, Stange C, Barrales L, Arce-Johnson P (2003) Regeneration of whole plants from apical meristems of Pinus radiata. Plant Cell Tissue Organ Cult 73:91–94. doi: 10.1023/A:1022615212607 CrossRefGoogle Scholar
  108. Quorin M, Lepoivre P (1977) Études de milieux adaptes aux cultures in vitro de Prunus. Acta Hortic 78:437–442Google Scholar
  109. Ragonezi C, Castro MR, Klimaszewska K, Lima M, Zavattieri MA (2010) Influence of light quality and intensity on adventitious root formation in microshoots of Pinus pinea L. Acta Hort 865:287–291.
  110. Rasmussen A, Smith TE, Hunt MA (2009) Cellular stages of root formation, root system quality and survival of Pinus elliottii var. elliottii × P. caribaea var. hondurensis cuttings in different temperature environments. New For 38:285–294. doi: 10.1007/s11056-009-9147-6 Google Scholar
  111. Risser PG, White PR (1964) Nutritional requirements of spruce tumor cells in vitro. Physiol Plant 17:620–635CrossRefGoogle Scholar
  112. Ritchie GA (1991) The commercial use of conifer rooted cuttings in forestry: a world overview. New For 5:247–275. doi: 10.1007/BF00028115 Google Scholar
  113. Rosier CL, Frampton J, Goldfarb B, Wise FC, Blazich FA (2004a) Growth stage, auxin type, and concentration influence rooting of stem cuttings of Fraser fir. HortScience 39:1397–1402Google Scholar
  114. Rosier CL, Frampton J, Goldfarb B, Wise FC, Blazich FA (2004b) Growth stage, auxin type, and concentration influence rooting of virginia pine stem cuttings. HortScience 39:1392–1396Google Scholar
  115. Rumary C, Thorpe TA (1984) Plantlet formation in black and white spruce. I. In vitro techniques. Can J For Res 14:10–16. doi: 10.1139/x84-002 CrossRefGoogle Scholar
  116. Saborio F, Dvorak WS, Donahue JK, Thorpe TA (1997) In vitro regeneration of plantlets from mature embryos of Pinus ayacahuite. Tree Physiol 17:787–796PubMedGoogle Scholar
  117. Scagel CF, Linderman RG (2000) Changes in root IAA content and growth of bare root conifers treated with plant growth regulating substances at planting. J Environ Hortic 18:99–107Google Scholar
  118. Scagel CF, Linderman RG, Scagel RK (2000) Ten-year growth and survival of Douglas-fir seedlings treated with plant growth regulating substances at transplant. Can J For Res 30:1778–1787. doi: 10.1139/cjfr-30-11-1778 CrossRefGoogle Scholar
  119. Scaltsoyiannes A, Panetsos K, Economou A, Tsoulpha P (1994) Micropropagation of the pine hybrid Pinus brutia (Ten) × Pinus halepensis (Mill) by culturing fascicle shoots. Ann Sci For 51:175–182. doi: 10.1051/forest:19940207 CrossRefGoogle Scholar
  120. Schenk RU, Hildebrandt AC (1972) Medium and techniques for induction and growth of monocotyledonous and dicotyledonous plant cell cultures. Can J Bot 50:199–204CrossRefGoogle Scholar
  121. Schestibratov KA, Mikhailov RV, Dolgov SV (2003) Plantlet regeneration from subculturable nodular callus of Pinus radiata. Plant Cell Tiss Org Cult 72:139–146CrossRefGoogle Scholar
  122. Selby C, Kennedy SJ, Harvey BMR (1992) Adventitious root formation in hypocotyl cuttings of Picea sitchensis (Bong.) Carr.—the influence of plant growth regulators. New Phytol 120:453–457CrossRefGoogle Scholar
  123. Sen S, Magallanes-Cedeno ME, Kamps RH, McKinley CR, Newton RJ (1994) In vitro micropropagation of Afghan pine. Can J For Res 24:1248–1252CrossRefGoogle Scholar
  124. Shamet GS, Bhardwaj SD (1995) Vegetative propagation of deodar, spruce, and silver-fir using stem cuttings under intermittent mist. Van Vigyan 33:80–84Google Scholar
  125. Shigehiro Y (2006) Effect of plant growth retardant (daminozide wettable powder) to control elongation of seedlings of Cryptomeria japonica and C. chamaecyparis obtuse. Bull Shizuoka Prefecture. For For Prod 34:1–6Google Scholar
  126. Silva AA (1985) Propagação vegetativa em Pinus spp. Silvicultura 2:141Google Scholar
  127. Skolmen RG, Mapes MO (1978) Aftercare procedures required for field survival of tissue culture propagated Acacia koa. Comb Proc Int Plant Prop Soc 28:156–164Google Scholar
  128. Smith DR (1986) Forest and nut trees. In: Bajaj YPS (ed) Biotechnology in agriculture and forestry. Trees, vol 1. Springer, Berlin, pp 274–289Google Scholar
  129. Sonia Tsai HC, Huang FH (1985) Vegetative propagation of Scots pine (Pinus sylvestris L.) through tissue culture. In: Proceedings of 18th southern forest tree improvement conference, Long Beach, MS, v. 18Google Scholar
  130. Stojičić D, Budimir S, Ćulafić L (1999) Micropropagation of Pinus heldreichii. Plant Cell Tissue Organ Cult 59:147–150. doi: 10.1023/A:1006373218772 CrossRefGoogle Scholar
  131. Stumpf ERT, Grolli P, Silva JAG (1999) Rooting of Chamaecyparis lawsoniana PARL. Cuttings with indolbutyric acid in five media. Ciênc Rural 29:207–211. doi: 10.1590/S0103-84781999000200004 Google Scholar
  132. Sul W, Korban SS (2004) Effects of salt formulations, carbon sources, cytokinins, and auxin on shoot organogenesis from cotyledons of Pinus pinea L. J Plant Growth Regul 43:197–205. doi: 10.1023/B:GROW.0000046013.47892.4f CrossRefGoogle Scholar
  133. Sutton B (2002) Commercial delivery of genetic improvement to conifer plantations using somatic embryogenesis. Ann For Sci 59:657–661. doi: 0.1051/forest:2002052 CrossRefGoogle Scholar
  134. Tang W, Guo Z (2001) In vitro propagation of loblolly pine via direct somatic organogenesis from mature cotyledons and hypocotyls. J Plant Growth Regul 33:25–31. doi: 10.1023/A:1010764816523 CrossRefGoogle Scholar
  135. Tang W, Newton RJ (2005a) Plant regeneration from callus cultures derived from mature zygotic embryos in white pine (Pinus strobus L.). Plant Cell Rep 24:1–9. doi: 10.1007/s00299-005-0914-3 PubMedCrossRefGoogle Scholar
  136. Tang W, Newton RJ (2005b) Polyamines promote root elongation and growth by increasing root cell division in regenerated Virginia pine (Pinus virginiana Mill) plantlets. Plant Cell Rep 24:581–589PubMedCrossRefGoogle Scholar
  137. Tang W, Newton RJ (2007) Micropropagation via organogenesis in slash pine. In: Jain SM, Häggman H (eds) Protocols for micropropagation of woody trees and fruits. Springer, Dordrecht, pp 15–22. doi: 10.1007/978-1-4020-6352-7_2 CrossRefGoogle Scholar
  138. Tang W, Ouyang F, Guo ZC (1998) Plant regeneration through organogenesis from callus induced from mature zygotic embryos of loblolly pine. Plant Cell Rep 17:557–560CrossRefGoogle Scholar
  139. Tang W, Harris LC, Outhavong V, Newton RJ (2004) The effect of different plant growth regulators on adventitious shoot formation from Virginia pine (Pinus virginiana) zygotic embryo explants. Plant Cell Tissue Organ Cult 78:237–240. doi: 10.1023/B:TICU.0000025658.73970.57 CrossRefGoogle Scholar
  140. Tarenghi E, Carré M, Martin-Tanguy J (1995) Effects of inhibitors of polyamine biosynthesis and polyamines on strawberry microcutting growth and development. Plant Cell Tiss Org Cult 42:47–55CrossRefGoogle Scholar
  141. Thorpe TA (1980) Organogenesis in vitro: structural, physiological, and biochemical aspects. In: Vasil IK (ed) Perspectives in plant cell and tissue culture. Int Rev Cytol, Suppl 11A, Academic Press, New York, pp 71–105Google Scholar
  142. Van den Driessche R (1983) Rooting of Sitka spruce cuttings from hedges, and after chilling. Plant Soil 71:495–499. doi: 10.1007/BF02182691 CrossRefGoogle Scholar
  143. Veierskov B (1988) Relations between carbohydrates and adventitious root formation. In: Davis TD, Haissig BE, Sankhla N (eds) Adventitious root formation in cuttings. Advanced plant science series, vol 2. Dioscorides Press, Portland, pp 11–28Google Scholar
  144. Wang J, Pan R (2006) Effect of ethylene on adventitious root formation. In: Khan NA (ed) Ethylene action in plants. Springer, Berlin, pp 69–79CrossRefGoogle Scholar
  145. Wenger KF (1984) Forestry handbook, 2nd edn. Wiley, New YorkGoogle Scholar
  146. Wiesman Z, Lavee S (1995) Enhancement of IBA stimulatory effect on rooting of olive cultivar stem cutting. Sci Hortic 65:189–198. doi: 10.1016/0304-4238(95)00772-L CrossRefGoogle Scholar
  147. Wiesman Z, Riov J, Epstein E (1989) Paclobutrazol and urea-phosphate increase rooting and survival of peach “Maravilha” softwood cuttings. HortScience 24:908–909Google Scholar
  148. Zavattieri A, Lima M, Sobral V, Oliveira P, Costa A (2009) Effects of carbon source, carbon concentration and culture conditions on in vitro rooting of Pinus pinea L. microshoots. Acta Hortic 812:173–180Google Scholar
  149. Zel J, Gogala N, Camloh M (1988) Micropropagation of Pinus sylvestris. Plant Cell Tissue Organ Cult 14:169–175CrossRefGoogle Scholar
  150. Zhang Y, Wei Z, Xi M, Shi J (2006) Direct organogenesis and plantlet regeneration from mature zygotic embryos of masson pine (Pinus massoniana L.). Plant Cell Tissue Organ Cult 84:119–123. doi: 10.1007/s11240-005-9004-z CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • Carla Ragonezi
    • 1
  • Krystyna Klimaszewska
    • 2
  • Mário Rui Castro
    • 1
  • Mónica Lima
    • 1
  • Paulo de Oliveira
    • 3
  • Maria Amely Zavattieri
    • 1
    Email author
  1. 1.Laboratory of Breeding and Plant Biotechnology, Institute of Mediterranean Agricultural SciencesUniversity of ÉvoraÉvoraPortugal
  2. 2.Natural Resources Canada, Canadian Forest Service, Laurentian Forestry Centre, 1055 du PEPSQuébecCanada
  3. 3.Laboratory of Soil Microbiology, Institute of Mediterranean Agricultural SciencesUniversity of ÉvoraÉvoraPortugal

Personalised recommendations