Advertisement

Trees

, Volume 25, Issue 1, pp 39–48 | Cite as

Radial stem variations of Tabebuia chrysantha (Bignoniaceae) in different tropical forest ecosystems of southern Ecuador

  • Franziska Volland-Voigt
  • Achim Bräuning
  • Oswaldo Ganzhi
  • Thorsten Peters
  • Hector Maza
Original Paper

Abstract

Stem diameter increments of the broadleaved deciduous tree species Tabebuia chrysantha were measured with high-resolution dendrometers in a tropical lower montane forest and in a dry forest in southern Ecuador, the latter showing a distinct dry season. Those analyses were complemented by wood anatomical studies on regularly collected microcores to determine the season of active cambial growth and the time of formation of annual growth boundaries. The length of the cambial active period varied between 3 and 7 months at the tropical lower montane forest and 2 and 4 months in the dry forest, respectively. During dry days, amplitudes of daily stem diameter variations correlated with vapour pressure deficit. During October and November, inter-annual climate variations may lead to dry and sunny conditions in the tropical lower montane forest, causing water deficit and stem diameter shrinkage in T. chrysantha. The results of the climate–growth analysis show a positive relationship between tree growth and rainfall as well as vapour pressure deficit in certain periods of the year, indicating that rainfall plays a major role for tree growth.

Keywords

Dendrometer Wood anatomy Dendroecology Tropical mountain forest Ecuador Tabebuia chrysantha 

Notes

Acknowledgments

This study was funded within the project BR 1895/14-1 (FOR 816) by the German Research Foundation (DFG). We also thank Ing. Eduardo Cueva for providing phenology data of Tabebuia in the dry forest of Laipuna.

References

  1. Anchukaitis KJ, Evans MN, Wheelswright NT, Schrag DP (2008) Stable isotope chronology and climate signal calibration in neotropical montane cloud forest trees. J Geophys Res 113:G03030. doi: 10.1029/2007JG000613 CrossRefGoogle Scholar
  2. Balselv H, Øllgaard B (2002) Mapa de vegetaciónes del sur de Ecuador. Botánica height Austroecuatoriana. Abya Yala, Quito, pp 51–64Google Scholar
  3. Bendix J, Lauer W (1992) Klimatologie. Westermann, BraunschweigGoogle Scholar
  4. Bendix J, Rollenbeck R, Fabian P, Emck P, Richter M, Beck E (2008) Climatic variability. Ecological studies, vol 198. Springer, Berlin, pp 281–290Google Scholar
  5. Biondi F, Hartsough PC, Estrada IG (2005) Daily weather and tree growth at the tropical treeline of North America. Arct Antarct Alp Res 37:16–24CrossRefGoogle Scholar
  6. Borchert R, Pockmann W (2005) Water storage capacitance and xylem tension in isolated branches of temperate and tropical trees. Tree Physiol 25:457–466PubMedGoogle Scholar
  7. Borchert R, Robertson K, Schwartz MD, Williams-Linera G (2005) Phenology of temperate trees in tropical climates. Int J Biometerol 50:57–65Google Scholar
  8. Bräuning A (2009) Climate variability of the tropical Andes since the late Pleistocene. Adv Geosci 7:1–13Google Scholar
  9. Bräuning A, Homeier J, Cueva E, Beck E, Günter S (2008a) Growth dynamics of trees in tropical mountain ecosystems. Ecological studies, vol 198. Springer, Berlin, pp 291–302Google Scholar
  10. Bräuning A, von Schnakenburg P, Volland-Voigt F, Peters T (2008b) Seasonal growth dynamics and its climate forcing in a tropical mountain rain forest in southern Ecuador. Tree Rings Archaeol Climatol Ecol 6:27–30Google Scholar
  11. Bräuning A, Volland-Voigt F, Burchardt I, Ganzhi O, Nauss T, Peters T (2009) Climatic control of radial growth of Cedrela montana in a humid mountain rain forest in southern Ecuador. Erdkunde 63:337–345CrossRefGoogle Scholar
  12. Brienen RJW (2005) Tree rings in the tropics: a study on growth and ages of Bolivian rain forest trees. PROMAB Scientific Series 10Google Scholar
  13. D’Arrigo R, Cook ER, Wilson RJ, Allan R, Mann ME (2005) On the variability of ENSO over the past six centuries. Geophys Res Lett 32:L03711CrossRefGoogle Scholar
  14. Deslauriers A, Morin H, Urbinati C, Carrer M (2003) Daily weather response of balsam fir (Abies balsamea (L.) Mill.) stem radius increment from dendrometer analysis in the boreal forests of Québec (Canada). Trees 17:477–484Google Scholar
  15. Deslauriers A, Rossi S, Anfodillo T (2007) Dendrometer and intra-annual tree growth: what kind of information can be inferred? Dendrochronologia 25:113–124CrossRefGoogle Scholar
  16. Downes G, Beadle C, Worledge D (1999) Daily stem growth patterns in irrigated Eucalyptus blobulus and E. nitens in relation to climate. Trees 14:102–111Google Scholar
  17. Drew DM, Downes GM (2009) The use of precision dendrometers in research on daily stem size and wood property variation: a review. Dendrochronologia 27:159–172CrossRefGoogle Scholar
  18. Emck P (2007) A climatology of South Ecuador. Diss. Uni. ErlangenGoogle Scholar
  19. Forster T, Schweingruber FH, Denneler B (2000) Increment puncher: a tool for extracting small cores of wood and bark from living trees. IAWA 21:169–180Google Scholar
  20. Gebrekirstos A, Mitlöhner R, Teketay D, Worbes M (2008) Climate–growth relationships of the dominant tree species from semi-arid savanna woodland in Ethiopia. Trees 22:631–641CrossRefGoogle Scholar
  21. Gonzales Estrella JE, Garcia Riofrio JC, Correa Conde J (2005) Especies forestales del bosque seco ‘Cerro Negro-Cazaderos’ Zapotillo-Puyango-Loja Ecuador. Fundación Ecológica Arcoiris, Loja, Ecuador, p 39Google Scholar
  22. Günter S (2009) Tabebuia chrysantha (Jacq.) Nichols., 1887. Enzyklopädie der Holzgewächse. Wiley VCH, WeinheimGoogle Scholar
  23. Hauser S (2003) Dynamik hochaufgelöster radialer Schaftveränderungen und des Dickenwachstums bei Buchen (Fagus sylvatica L.) der Schwäbischen Alb unter dem Einfluss von Witterung und Bewirtschaftung. Diss. Uni. Freiburg. http://www.freidok.uni-freiburg.de//volltexte/1121
  24. Herzog KM, Häsler R, Thum R (1995) Diurnal changes in the radius of a subalpine Norway spruce stem: their relation to the sap flow and their use to estimate transpiration. Trees 10:94–101CrossRefGoogle Scholar
  25. Homeier J (2004) Baumdiversität, Waldstruktur und Wachstumsdynamik zweier tropischer Bergregenwälder in Ecuador und Costa Rica. Diss. Uni. Bielefeld, p 207Google Scholar
  26. Kozlowski TT, Winget CH (1964) Diurnal and seasonal variations in radii of tree stems. Ecology 45:149–155CrossRefGoogle Scholar
  27. Krepkowski J, Bräuning A, Gebrekirstos A, Strobl S (2010) Seasonal growth dynamics and climatic control of different tree life forms in Munessa Forest (Ethiopia). Trees (this volume)Google Scholar
  28. Lisi CS, Tomazello F, Botosso PC, Roig A, Maria VRB, Ferreira-Fedele L, Voigt ARA (2008) Tree-ring formation, radial increment periodicity, and phenology of tree species from a seasonal semi-deciduous forest in southeast Brazil. IAWA 29:189–207Google Scholar
  29. Lövdahl L, Odin H (1992) Diurnal changes in the stem diameter of Norway spruce in relation to relative humidity and air temperature. Trees 6:245–251CrossRefGoogle Scholar
  30. Lüttge U, Hertel B (2009) Diurnal and annual rhythms in trees. Trees 23:683–700CrossRefGoogle Scholar
  31. Offenthaler I, Hietz P, Richter H (2001) Wood diameter indicates diurnal and long-term patterns of xylem water potential in Norway spruce. Trees 15:215–221CrossRefGoogle Scholar
  32. Poussart PF, Schrag DP (2005) Seasonally resolved stable isotope chronologies from northern Thailand deciduous trees. Earth Planet Sci Lett 235:752–765CrossRefGoogle Scholar
  33. Poussart PF, Evans MN, Schrag DP (2004) Resolving seasonality in tropical trees: multi-decade, high-resolution oxygen and carbon records from Indonesia and Thailand. Earth Planet Sci Lett 218:301–316CrossRefGoogle Scholar
  34. Reich PB, Borchert R (1982) Phenology and ecophysiology of the tropical tree, Tabebuia neochrysantha (Bignoniaceae). Ecology 63:294–299CrossRefGoogle Scholar
  35. Richter M, Diertl KH, Emck P, Peters T, Beck E (2009) Reasons for an outstanding plant diversity in the tropical Andes of Southern Ecuador. Landsc Online 12:1–35Google Scholar
  36. Sire (2001) Tabebuia chrysantha. Sire-paquetes TecnologicosGoogle Scholar
  37. Soliz C, Villalba R, Argollo J, Christie D, Morales MS, Moya J, Pacajes J (2009) Spatial and temporal variations in Polylepis tarapacana growth across the Bolivian Altiplano during the 20th century. Palaeogeogr Palaeoclimatol Palaeoecol 281:296–308CrossRefGoogle Scholar
  38. Stahle DW (1999) Useful strategies for the development of tropical tree-ring chronologies. IAWA 20:249–253Google Scholar
  39. Stahle DW, D’Arrigo RD, Krusic PJ, Cleaveland MK, Cook ER, Allan RJ, Cole J (1998) Experimental dendroclimatic reconstruction of the southern oscillation. Bull Am Meteorol Soc 79:2137–2152CrossRefGoogle Scholar
  40. Verheyden A, Helle G, Schleser GH, Dehairs F, Beeckman H, Koedam N (2004) Annual cyclicity in high-resolution stable carbon and oxygen isotope ratios in the wood of the mangrove tree Rhizophora mucronata. Plant Cell Environ 27:1525–1536CrossRefGoogle Scholar
  41. Volland-Voigt F, Bräuning A, Ganzhi O (2009) High-resolution dendrometer measurements in a tropical lower montane forest and a dry forest in South Ecuador. Tree Rings Archaeol Climatol Ecol 7:85–88Google Scholar
  42. Wimmer R, Downes GM, Evans R (2002) High-resolution analysis of radial growth and wood density in Eucalyptus nitens, grown under different irrigation regimes. Ann For Sci 59:519–524CrossRefGoogle Scholar
  43. Worbes M (1999) Annual growth rings, rainfall-dependent growth and long-term growth patterns of tropical trees from the Caparo Forest Reserve in Venezuela. Ecology 87:391–403CrossRefGoogle Scholar
  44. Worbes M (2002) One hundred years of tree-ring research in the tropics—a brief history and a outlook to the future challenges. Dendrochronologia 20:217–231CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • Franziska Volland-Voigt
    • 1
  • Achim Bräuning
    • 1
  • Oswaldo Ganzhi
    • 2
  • Thorsten Peters
    • 1
  • Hector Maza
    • 2
  1. 1.Institute of GeographyFriedrich-Alexander-University of Erlangen-NurembergErlangenGermany
  2. 2.Carrera de Ingenieria Forestal “Ciudadela Guillermo Falconi Espinoza”Universidád Nacional de LojaLojaEcuador

Personalised recommendations