Trees

, Volume 24, Issue 4, pp 713–722 | Cite as

Cell wall polysaccharides from cell suspension cultures of the Atlantic Forest tree Rudgea jasminoides (Rubiaceae)

  • Clóvis J. F. Oliveira Júnior
  • Aline A. Cavalari
  • Nicholas C. Carpita
  • Marcos S. Buckeridge
  • Marcia R. Braga
Original Paper

Abstract

Rudgea jasminoides (Rubiaceae) is a tropical tree species native of the Atlantic Forest in the south of Brazil. Previous studies with leaf cell walls of R. jasminoides showed a different proportion of cross-linked glycans compared to what is usually reported for eudicots. However, due to the difficulties of working with whole plant organs, cell suspensions of R. jasminoides, consisting of predominantly undifferentiated cells with mainly primary cell walls, were used to examine cell walls and extracellular soluble polysaccharides (EP) released into the culture medium. Sugar composition and linkage analysis showed homogalacturonans, xylogalacturonans and arabinogalactans to be the predominant EP. In the cell wall, homogalacturonans and arabinogalactans are the major pectins, and xyloglucans and xylans are the major cross-linking glycans. The presence of xylogalacturonans in the R. jasminoides cell cultures seems to be related to the occurrence of a homogeneous cell suspension with loosely attached cells. Although all alkali extractions from the cell walls yielded amounts of xyloglucan that exceed those of the xylans, the latter was found in a proportion that is higher than what has been usually reported for primary cell walls of most eudicots. The xyloglucan from cell walls of cell suspension cultures of R. jasminoides has low fucosylation levels and high proportion of galactosyl residues, a branching pattern commonly found in storage cell-wall xyloglucans.

Keywords

Atlantic Forest Cell wall polysaccharides Rubiaceae Xylogalacturonans Arabinoxylan Xyloglucan 

References

  1. Al-Kaisey MT, Wilkie CB (1992) The polysaccharides of agricultural lupin seeds. Carbohydr Res 227:147–161. doi:10.1016/0008-6215(92)85067-A CrossRefPubMedGoogle Scholar
  2. Aspinall GO, Moloy JA, Craig JWT (1969) Extracellular polysaccharides from suspension culture sycamore cells. Can J Biochem 47:1063–1070. doi:10.1139/o69-170 CrossRefPubMedGoogle Scholar
  3. Braga MR, Young MCM, Dietrich SMC, Gottlieb OR (1991) Phytoalexin induction in Rubiaceae. J Chem Ecol 17:1079–1090. doi:10.1007/BF01402935 CrossRefGoogle Scholar
  4. Braga MR, Pessoni RAB, Dietrich SMC (1998) Cell wall polysaccharide composition of leaves of tropical Rubiaceae differing in phytoalexin response. Rev Bras Fisiol Veg 10:71–78Google Scholar
  5. Buckeridge MS, Reid JSG (1994) Purification and properties of a novel β-galactosidase or exo-β(1-4)-galactanase from the cotyledons of germinated Lupinus angustifolious L. seeds. Planta 192:502–511. doi:10.1007/BF00203588S CrossRefPubMedGoogle Scholar
  6. Buckeridge MS, Crombie HJ, Mendes CJM, Reid JSG, Gidley MJ, Vieira CCJ (1997) A new family of oligosaccharides from the xylglucan of Hymenea courbaril L. (Leguminosae) cotyledons. Carbohydr Res 303:233–237. doi:10.1016/S0008-6215(97)00161-4 CrossRefPubMedGoogle Scholar
  7. Buckeridge MS, Santos HP, Tiné MAS (2000) Mobilisation of storage cell wall polysaccharides in seeds. Plant Physiol Biochem 38:141–156. doi:10.1016/S0981-9428(00)00162-5 CrossRefGoogle Scholar
  8. Carpita NC (1996) Structure and biogenesis of the plant cell walls of grasses. Annu Rev Plant Physiol 47:445–476. doi:10.1146/annurev.arplant.47.1.445 CrossRefGoogle Scholar
  9. Carpita NC, Gibeaut DM (1993) Structural models of primary cell walls in flowering plants: consistency of molecular structure with the physical properties of the cell wall during growth. Plant J 3:1–30. doi:10.1111/j.1365-313X.1993.tb00007 CrossRefPubMedGoogle Scholar
  10. Carpita NC, McCann MC (1996) Some new methods to study plant polyuronic acids and their esters. In: Townsend R, Hotchkiss A (eds) Progress in glycobiology. Marcell Dekker, New York, pp 595–611Google Scholar
  11. Carpita NC, Shea EM (1989) Linkage structure by gas chromatography-mass spectrometry of partially-methylated alditol acetates. In: Biermann CJ, McGinnis GD (eds) Analysis of carbohydrates by GLC and MS. CRC Press, Boca Raton, pp 155–216Google Scholar
  12. Darvill AG, Augur C, Bergmann C, Carlson W, Cheong JJ, Ebehard S, Hahn MG et al (1992) Oligosaccharins—oligosaccharides that regulate growth, development, and defense responses in plants. Glycobiology 2:181–198. doi:10.1093/glycob/2.3.181 CrossRefPubMedGoogle Scholar
  13. Dubois M, Gilles KA, Hamilton JK, Rebels PA, Smith F (1956) Colorimetric methods for determination of sugars and related substances. Anal Chem 3:350–356. doi:10.1021/ac60111a017 CrossRefGoogle Scholar
  14. Figueiredo SFL, Simões C, Albarello N, Viana VRC (2000) Rollinia mucosa cell suspension cultures: establishment and growth conditions. Plant Cell Tissue Organ Cult 63:85–92. doi:10.1023/A:1006483822768 CrossRefGoogle Scholar
  15. Filisetti-Cozzi TMCC, Carpita NC (1991) Measurement of uronics acids without interference from neutral sugars. Anal Biochem 197:157–162. doi:10.1016/0003-2697(91)90372-Z CrossRefPubMedGoogle Scholar
  16. Fry SC, York WS, Albersheim P, Darvill A, Hayashi T, Joseleau J-P, Kato Y, Lorences EP, Maclachlan GA, McNeil M, Mort AJ, Reid JS, Seitz HU, Selvendran RR, Voragen AGJ, White AR (1993) An unambiguous nomenclature for xyloglucan-derived oligosaccharides. Physiol Plant 89:1–3. doi:10.1111/j.1399-3054.1993.tb01778 CrossRefGoogle Scholar
  17. Gibeaut DM, Carpita NC (1991) Tracing the biosynthesis of the cell wall in intact cells and plants. Selective turnover and alteration of cytoplasmic and cell wall polysaccharides of millet cells in liquid culture and Zea mays seedlings. Plant Physiol 97:551–561. doi:10.1104/pp.97.2.551 CrossRefPubMedGoogle Scholar
  18. Gorshkova TA, Wyatt SE, Salnikov VV, Gibeaut DM, Ibragimov MR, Lozovaya VV, Carpita NC (1996) Cell-wall polysaccharides of developing flax plants. Plant Physiol 110:721–729. doi:10.1104/pp.110.3.721 PubMedGoogle Scholar
  19. Hoffman M, Jia Z, Peña MJ, Cash M, Harper A, Blackburn AR, Darvill A, York WS (2005) Structural analysis of xyloglucans in the primary cell walls of plants in the subclass Asteridae. Carbohydr Res 340:1826–1840. doi:10.1016/j.carres.2005.04.016 CrossRefPubMedGoogle Scholar
  20. Jia Z, Qin Q, Darvill AG, York WS (2003) Structure of the xyloglucan produced by suspension-cultured tomato cells. Carbohydr Res 338:1197–1208. doi:10.1016/S0008-6215(03)00079-X CrossRefPubMedGoogle Scholar
  21. Kakegawa K, Edashige Y, Ishii T (2000) Metabolism of cell wall polysaccharides in cell suspension cultures of Populus alba in relation to cell growth. Physiol Plant 108:420–425. doi:10.1034/j.1399-3054.2000.t01-1-100412 CrossRefGoogle Scholar
  22. Kikuchi A, Edashige Y, Ishii T, Satoh S (1996) A xylogalacturonan whose level is dependent on the size of cell clusters is present in the pectin from cultured carrot cells. Planta 200:369–372. doi:10.1007/BF00231391 CrossRefGoogle Scholar
  23. Kim J-B, Carpita NC (1992) Changes in esterification of the uronic acid groups of cell wall polysaccharides during elongation of maize coleoptiles. Plant Physiol 98:646–653. doi:10.1104/pp.98.2.646 CrossRefPubMedGoogle Scholar
  24. Kretzschmar FS, Oliveira Júnior CJF, Braga MR (2007) Differential sugar uptake by cell suspension cultures of Rudgea jasminoides, a tropical woody Rubiaceae. In Vitro Cell Dev Biol Plant 43:71–78. doi:10.1007/s11627-006-9001-x CrossRefGoogle Scholar
  25. McCann MC, Roberts K (1991) Architecture of the primary cell wall. In: Lloyd CW (ed) The cytoskeletal basis of plant growth and form. Academic Press, London, pp 109–129Google Scholar
  26. Moraes F, Hahn MG, Braga MR (2001) Comparative analysis of leaf cell-wall polysaccharides of Dialypetalanthus fuscescens and Bathysa meridionalis: evidence of biochemical similarities between Dialypetalanthaceae and Rubiaceae-Cinchonoideae. Rev Bras Bot 24:289–294. doi:10.1590/S0100-84042001000300007 CrossRefGoogle Scholar
  27. Moser JR, Garcia MG, Viana AM (2004) Establishment and growth of embryogenic suspension cultures of Ocotea catharinensis Mez. (Lauraceae). Plant Cell Tissue Organ Cult 78:37–42. doi:10.1023/B:TICU.0000020387.96568.25 CrossRefGoogle Scholar
  28. Oliveira Júnior CJF, Braga MR, Buckeridge MS (2006) Efeitos de oligossacarídeos de xiloglucano sobre o metabolismo extracelular de Rudgea jasminoides durante o crescimento. Hoehnea 33:239–246Google Scholar
  29. Oliveira MC, Negri G, Salatino A, Braga MR (2007) Detection of anthraquinones and identification of 1, 4-naphtohydroquinone in cell suspension cultures of Rudgea jasminoides (Rubiaceae). Rev Bras Bot 30:167–172. doi:10.1590/S0100-84042007000100017 CrossRefGoogle Scholar
  30. Oliveira MC, Simões K, Braga MR (2009) Substâncias antifúngicas constitutivas e induzidas em folhas e suspensões celulares de Rudgea jasminoides (Cham.) Müll. Arg. (Rubiaceae). Rev Bras Bot 32:509–519. doi:10.1590/S0100-84042009000300010 Google Scholar
  31. Pauly M, Eberhard S, Albersheim P, Darvill A, York WS (2001) Effects of the mur 1 mutation on xyloglucans produced by suspension-cultured Arabidopsis thaliana cells. Planta 214:67–74. doi:10.1007/s0042500100585 CrossRefPubMedGoogle Scholar
  32. Piesschaert F, Robbrecht E, Smets E (1997) Dialypetalanthus fuscescens Kuhlm. (Dialypetalanthaceae): the problematic taxonomic position of an Amazonian endemic. Ann Mo Bot Gard 84:201–223CrossRefGoogle Scholar
  33. Sarkar P, Bosneaga E, Auer M (2009) Plant cell walls throughout evolution: towards a molecular understanding of their design principles. J Exp Bot 13:3615–3635. doi:10.1093/jxb/erp245 CrossRefGoogle Scholar
  34. Silva CA, Alves ES, Braga MR (2004) Aspectos morfo-anatômicos e citoquímicos de folhas de Alibertia myrcifolia (Spruce ex. Schm.) Schum. e Rudgea jasminoides (Cham.) Mull.Arg. (Rubiaceae). Hoehnea 31:215–223Google Scholar
  35. Sims IM, Munro SLA, Currie G, Craik D, Bacic A (1996) Structural characterisation of xyloglucan secreted by suspension-cultured cells of Nicotiana plumbaginifolia. Carbohydr Res 293:147–172. doi:10.1016/0008-6215(96)00142-5 CrossRefPubMedGoogle Scholar
  36. Sims IM, Middleton K, Lane AG, Cairns S, Bacic A (2000) Characterisation of extracellular polysaccharides from suspension cultures of members of the Poaceae. Planta 210:261–268. doi:10.1007/PL00008133 CrossRefPubMedGoogle Scholar
  37. Stella A, Braga MR (2002) Callus and cell suspension culture of Rudgea jasminoides, a tropical woody Rubiaceae. Plant Cell Tissue Organ Cult 68:271–276. doi:10.1023/A:1013901909797 CrossRefGoogle Scholar
  38. Stevenson TT, McNeil M, Darvill AG, Albersheim P (1986) Structure of plant cell walls. XVIII An analysis of the extracellular polysaccharides of suspension cultured sycamore cells. Plant Physiol 80:1012–1019. doi:10.1104/pp.80.4.1012 CrossRefPubMedGoogle Scholar
  39. Webster JM, Oxley D, Pettolino FA, Bacic A (2008) Characterisation of secreted polysaccharides and (glycol) proteins from suspension cultures of Pyrus communis. Phytochemistry 69:873–881. doi:10.1016/j.phytochem.2007.10.009 CrossRefPubMedGoogle Scholar
  40. Willats WGT, McCartney L, Steele-King CG, Marcus SE, Mort AM, Huisman M, van Alebeek G-J, Schols HA, Voragen AGJ, Le Goff A, Bonnin E, Thibault J-F, Knox JP (2004) A xylogalacturonan epitope is specifically associated with plant cell detachment. Planta 218:673–681. doi:10.1007/s00425-003-1147-8 CrossRefPubMedGoogle Scholar
  41. Xavier ES, Silva CA, Braga MR (2004) Eliciadores de fitoalexinas de paredes celulares de Alibertia myrcifolia e Rudgea jasminoides obtidos por autoclavagem. Hoehnea 31:23–31Google Scholar
  42. Zandleven J, OxenbøllSørensen S, Harholt J, Beldman G, Schols HA, Scheller HV, Voragen AJ (2007) Xylogalacturonan exists in cell walls from various tissues of Arabidopsis thaliana. Phytochemistry 68:1219–1226. doi:10.1016/j.phytochem.2007.01.016 CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • Clóvis J. F. Oliveira Júnior
    • 1
  • Aline A. Cavalari
    • 2
  • Nicholas C. Carpita
    • 3
  • Marcos S. Buckeridge
    • 4
  • Marcia R. Braga
    • 5
  1. 1.Núcleo de Pesquisa em Plantas OrnamentaisInstituto de BotânicaSão PauloBrazil
  2. 2.Universidade Federal de São PauloDiademaBrazil
  3. 3.Department of Plant PathologyPurdue UniversityWest LafayetteUSA
  4. 4.Departamento de BotânicaUniversidade de São PauloSão PauloBrazil
  5. 5.Núcleo de Pesquisa em Fisiologia e BioquímicaInstituto de BotânicaSão PauloBrazil

Personalised recommendations