Advertisement

Trees

, Volume 24, Issue 3, pp 443–453 | Cite as

Seedling drought stress susceptibility in two deciduous Nothofagus species of NW Patagonia

  • Santiago Agustín Varela
  • J. E. Gyenge
  • M. E. Fernández
  • T. Schlichter
Original Paper

Abstract

The physiological capacities of seedlings to cope with drought may be subject to strong selective pressure in the context of future climate scenarios, threatening the regeneration and sustainability of forests. Characterization of the responses and the variability between species is of interest to breeding and domestication programs. In this study, our main goal was to describe some of the physiological mechanisms involved in the drought response of Nothofagus nervosa and N. obliqua, two forest species of ecological and commercial importance (high wood quality) in NW Patagonia. We tested for differences in water status, gas exchange and survival in response to a gradually imposed severe drought. Based on cavitation vulnerability curves and hydraulic conductivity measurements, we can conclude that N. obliqua stems have higher specific hydraulic conductivity and somewhat lower vulnerability to cavitation than N. nervosa stems, leading it to sustain higher stomatal conductance under non-severe drought conditions. N. obliqua had higher photosynthetic capacity than N. nervosa, due both to characteristics of its hydraulic architecture and to its higher metabolic capacity. Our results indicate that both species present characteristics of plants susceptible to water stress. Also, both species showed behavior resembling an anisohydric response. This behavior results from a lack of stomatal control over transpiration while the soil dehydrates, probably accompanied by very high vulnerability to cavitation. In contrast, both species had similar high stomatal sensitivity to vapor pressure deficit when soil water was limiting.

Keywords

Stomatal conductance Drought avoidance Water stress Seedlings 

Notes

Acknowledgments

The authors wish to thank Mariana Weigandt and Mariano Beriso for helpful discussions and Fernanda Menni and Cecilia Gittins for their assistance with GLZ models. This study was supported by project PNFOR4232, INTA, Argentina.

References

  1. Aranda I, Gil L, Pardos JA (2004) Osmotic adjustment in two temperate oak species [Quercus pyrenaica Willd and Quercus petraea (Matt.) Liebl] of the Iberian Peninsula in response to drought. Invest Agrar Sist Recur For 13:339–345Google Scholar
  2. Barbero F (2008) Desarrollo de un Sistema de Información Geográfica (SIG) para determinar áreas potenciales de cultivo de Nothofagus nervosa (“Raulí”) y Nothofagus obliqua (“Roble Pellín”) en la Provincia de Río Negro a nivel de pre-factibilidad. Informe de Trabajo Final, Facultad de Ciencias Agrarias y Forestales, Universidad Nacional de La Plata, 27Google Scholar
  3. Cochard H, Martin R, Gross P, Boget-Triboulot MB (2000) Temperature effects on hydraulic conductance and water relations of Quercus robur L. J Exp Bot 51:1255–1259CrossRefPubMedGoogle Scholar
  4. Corcuera L (2003) Respuesta al clima de distintas especies del género Quercus: Estructura y funcionamiento comparado. PhD Thesis, University of Lérida, SpainGoogle Scholar
  5. Corcuera L, Camarero JJ, Gil-Pelegrín E (2002) Functional groups in Quercus species derived from the analysis of pressure–volume curves. Trees 16:465–472CrossRefGoogle Scholar
  6. Donoso P, Donoso C, Baldini A, Gallo L, Escobar B, Azpilicueta M (2007) Nothofagus obliqua (Mirb.) Oerst. Roble, Pellín, Hualle. In: Donoso Zegers P (ed) Las especies arbóreas de los bosques templados. Autoecología, Chile, pp 471–485Google Scholar
  7. Eastman PA, Camm EL (1995) Regulation of photosynthesis in interior spruce during water stress: changes in gas exchange and chlorophyll fluorescence. Tree Physiol 15:229–235PubMedGoogle Scholar
  8. Ethier GJ, Livingston NJ (2004) On the need to incorporate sensitivity to CO2 transfer conductance into the Farquhar-von Caemmerer-Berry leaf photosynthesis model. Plant Cell Environ 27:137–153CrossRefGoogle Scholar
  9. Ewers BE, Oren R (2000) Analysis of assumptions and errors in the calculation of stomatal conductance from sap flux measurements. Tree Physiol 20:579–589PubMedGoogle Scholar
  10. Fernández ME, Gyenge JE, Schlichter T (2009) Water flux and canopy conductance of natural versus planted forests in Patagonia, South America. Trees 23:415–427CrossRefGoogle Scholar
  11. Ferrer J, Irisara J, Mendia J (1990) Estudio Regional de Suelos de la Provincia de Neuquén. CFi. Bs As Vol I, T 2:159, T3:232Google Scholar
  12. Gallé A, Feller U (2007) Changes of photosynthetic traits in beech saplings (Fagus sylvatica) under severe drought stress and during recovery. Physiol Plantarum 131:412–421CrossRefGoogle Scholar
  13. Gallo L, Donoso C, Donoso P (2004) Variación en Nothofagus nervosa (Phil.) Dim. et Mil. (N. alpina, N. procera). In: Donoso C, Premoli A, Gallo L, Ipinza R (eds), Variación intraespecifica en las especies arbóreas de los bosques templados de Chile y Argentina. Editorial Universitaria 420Google Scholar
  14. Gallo L, Marchelli P, Chauchard L, Gonzales Peñalba M (2009) Knowing and doing: research leading to action in the conservation of forest genetic diversity of Patagonian temperate forests. Conserv Biol 23:895–898 CrossRefPubMedGoogle Scholar
  15. Guédon Y, Puntieri JG, Sabatier S, Barthélémy D (2006) Relative extents of preformation and neoformation in tree shoots: analysis by a deconvolution method. Ann Bot 98:835–844CrossRefPubMedGoogle Scholar
  16. Gyenge JE, Fernández ME, Dalla Salda G, Schlichter T (2005) Leaf and whole-plant water relations of the Patagonian conifer Austrocedrus chilensis (D. Don) Pic. Ser. et Bizzarri: implications on its drought resistance capacity. Ann For Sci 62:297–302CrossRefGoogle Scholar
  17. Gyenge JE, Fernández ME, Schlichter T (2007) Influence of radiation and drought on gas exchange of Austrocedrus chilensis seedlings. Bosque 28:220–225Google Scholar
  18. Gyenge JE, Fernández ME, Schlichter T (2008) Are differences in productivity between native and exotic trees in N.W. Patagonia related to differences in hydraulic conductance? Trees 22:483–490CrossRefGoogle Scholar
  19. IPCC (Intergovernmental Panel on Climate Change) (2008) Climatic change and water. Intergovernmental Panel on Climate Change. In: Bates B, Kundzewicz Z, Wu S, Palutikof J (eds) IPCC Technical Paper VI. WMO y UNEPGoogle Scholar
  20. Jobbágy EG, Sala OE, Paruelo JM (1995) Patterns and controls of primary production in the Patagonian steppe: a remote sensing approach. Ecology 83:307–319Google Scholar
  21. Kozlowski TT, Pallardy SG (2002) Acclimation and adaptive responses of woody plants to environmental stresses. Bot Rev 68:270–334CrossRefGoogle Scholar
  22. Lemoine D, Cochard H, Granier A (2002) Within crown variation in hydraulic architecture in beech (Fagus sylvatica L.): evidence for a stomatal control of xylem embolism. Ann For Sci 59:19–27CrossRefGoogle Scholar
  23. Lendzion J, Leuschner C (2008) Growth of European beech (Fagus sylvatica L.) saplings is limited by elevated atmospheric vapor deficits. For Ecol Manag 256:648–655CrossRefGoogle Scholar
  24. Leuzinger S, Zotz G, Asshoff R, Körner C (2005) Responses of deciduous forest trees to sever drought in Central Europe. Tree Physiol 25:641–650PubMedGoogle Scholar
  25. López R, Rodriguez-Calcerrada J, Gil E (2009) Physiological and morphological response to water deficit in seedlings of five provenances of Pinus canariensis: potential to detect variation in drought tolerance. Trees 23:509–519CrossRefGoogle Scholar
  26. Maherali H, DeLucia EH (2000) Interactive effects of elevated CO2 and temperature on the water transport of ponderosa pine. Am J Bot 87:243–249CrossRefPubMedGoogle Scholar
  27. Maherali H, Pockman W, Jackson R (2004) Adaptative variation in the vulnerability of woody plants to xylem cavitation. Ecology 85:2184–2199CrossRefGoogle Scholar
  28. Marchelli P (2001) Variabilidad genética en Raulí (Nothofagus nervosa (Phil.) Dim. Et Mil., su relación con procesos evolutivos y la importancia en la conservación y utilización de sus recursos genéticos. Tesis Universidad Nacional del Comahue, Bariloche, 222Google Scholar
  29. Martinez Pastur G, Lencinas MV, Peri P, Arena M (2007) Photosynthetic plasticity of Nothofagus pumilio seedlings to light intensity and soil moisture. For Ecol Manag 243:274–282CrossRefGoogle Scholar
  30. Martinez-Ferri E, Balaguer L, Valladares F, Chico JM, Manrique E (2000) Energy dissipation in drought-avoiding and drought tolerant tree species at midday during Mediterranean summer. Tree Physiol 20:131–138PubMedGoogle Scholar
  31. McDowell N, Pockman W, Allen CD, Breshears DD, Cobb N, Kolb T, Plaut J, Sperry J, West A, Williams DG, Yepez EA (2008) Mechanisms of plant survival and mortality during drought: why do some plants survive while others succumb to drought? New Phytol 178:719–739CrossRefPubMedGoogle Scholar
  32. Ogaya R, Peñuelas J (2003) Comparative field study of Quercus ilex and Phillyrea latifolia: photosynthetic response to experimental drought conditions. Environ Exp Bot 50:137–148CrossRefGoogle Scholar
  33. Oren R, Sperry JS, Katul GG, Pataki DE, Ewers BE, Phillips N, Shäfer KVR (1999) Survey and synthesis of intra-and interspecific variation in stomatal sensitivity to vapor pressure deficit. Plant Cell Environ 22:1515–1526CrossRefGoogle Scholar
  34. Pammenter NW, Vander Willigen C (1998) A mathematical and statistical analysis of the curves illustrating vulnerability of xylem to cavitation. Tree Physiol 18:589–593PubMedGoogle Scholar
  35. Peri P, Martinez Pastur G, Lencinas MV (2009) Photosynthetic response to different light intensities and water status of two main Nothofagus species of southern Patagonian forest, Argentina. J For Sci 55:101–111Google Scholar
  36. Piper F, Corcuera LJ, Lusk C (2007) Differential photosynthetic and survival responses to soil drought in two evergreen Nothofagus species. Ann For Sci 64:447–452CrossRefGoogle Scholar
  37. Pratolongo P, Quintana R, Malvarez I, Cagnoni M (2003) Comparative analysis of variables associated with germination and seedling establishment for Prosopis nigra (Griseb.) Hieron and Acacia caven (Mol.) Mol. For Ecol Manag 179:15–25CrossRefGoogle Scholar
  38. Premoli A (2004) Variación en Nothofagus pumilio (Poepp. et Endl.) Krasser. In: Donoso C, Premoli A, Gallo L, Ipinza R (eds) Variación intraespecifica en las especies arbóreas de los bosques templado de Chile y Argentina. Editorial Universitaria, pp 420Google Scholar
  39. Puntieri J, Grosfel J, Stecconi M, Brion C, Azpilicueta MM, Gallo L, Barthélémy D (2007) Shoot development and dieback in progenies of Nothofagus obliqua. Ann For Sci 64:839–844CrossRefGoogle Scholar
  40. Read J, Hill RS (1985) Photosynthetic responses to light of Australian and Chilean species of Nothofagus and their relevance to the rainforest dynamics. New Phytol 101:731–742CrossRefGoogle Scholar
  41. Sharkey TD, Bernacchi CJ, Farquhar GO, Singaas EL (2007) Fitting photosynthetic carbon dioxide response curves for C3 leaves. Plant Cell Environ 30:1035–1040CrossRefPubMedGoogle Scholar
  42. Suarez ML, Germandi L, Kitzberger T (2004) Factors predisposing episodic drought-induced tree mortality in Nothofagus—site, climatic sensitivity and growth trends. J Ecol 92:954–966CrossRefGoogle Scholar
  43. Sultan SE, Wilczek AM, Bell DL, Hand G (1998) Physiological response to complex environments in annual Polygonum species of contrasting ecological breadth. Oecologia 115:564–578CrossRefGoogle Scholar
  44. Sun OJ, Sweet GB, Whitehead D (1995) Physiological responses to water stress and waterlogging in Nothofagus species. Tree Physiol 15:629–638PubMedGoogle Scholar
  45. Tardieu F, Simoneau T (1998) Variability among species of stomatal control under fluctuating soil water status and evaporative demand: modeling isohydric and anisohydric behaviours. J Exp Bot 49:419–432CrossRefGoogle Scholar
  46. Tyree M, Sperry J (1988) Do woody plants operate near the point of catastrophic xylem dysfunction caused by dynamic water stress? Answers from a model. Plant Physiol 88:574–580CrossRefPubMedGoogle Scholar
  47. Valladares F (2004) Global change and radiation in Mediterranean forest ecosystems: a meeting point for ecology and management. In: Arianoutsou, Papanatasis (eds) Proceedings 10th Medecos conference, 25 April–1 May, Rhodes, Greece. ISBN:90 5966 016 1Google Scholar
  48. Veblen TT, Donoso C, Kitzberger T, Rebertus AJ (1996) Ecology of southern Chilean and Argentinean Nothofagus forests. In: Veblen TT, Hill RS, Read J (eds) The ecology and biogeography of Nothofagus forests. Yale University Press, New Haven, CT, pp 293–353Google Scholar
  49. Yin C, Peng Y, Zang R, Zhu Y, Li C (2005) Adaptative responses of Populus kangdingensis to drought stress. Physiol Plantarum 123:445–451CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • Santiago Agustín Varela
    • 1
  • J. E. Gyenge
    • 1
    • 2
  • M. E. Fernández
    • 1
    • 2
  • T. Schlichter
    • 1
  1. 1.Grupo de Ecología ForestalInstituto Nacional de Tecnología Agropecuaria, INTA Estación Experimental Agropecuaria BarilocheSan Carlos de BarilocheArgentina
  2. 2.Consejo Nacional de Investigaciones Científicas y Técnicas, CONICETBuenos AiresArgentina

Personalised recommendations