Trees

, Volume 23, Issue 5, pp 1065–1073 | Cite as

Size mediated climate–growth relationships in Pinus halepensis and Pinus pinea

  • Martín De Luis
  • Klemen Novak
  • Katarina Čufar
  • José Raventós
Original Paper

Abstract

Functional processes in trees undergo changes as the tree size increases, which may affect the response of trees to environmental factors. We tested tree-ring response to climate in four groups of trees, including large and small Pinus halepensis and Pinus pinea trees using cluster, principal component (PC) and dendroclimatological analysis. The trees were of the same age and growing on a plantation in the semiarid coastal area of southern Spain. Cluster and PC analyses showed a clear separation into four groups of trees. Autocorrelation and mean sensitivity showed significant differences between the two size classes. PCA recognised four representative principal components where PC1 represented the tree-ring—climate variability common to both species and sizes, whereas PC2, PC3 and PC4 represented a species-specific and size-dependent response of trees to climate. The differences between the two size classes were greater than those between the two species. The results suggest that future tree-ring studies should include trees stratified by size. Only this would make it possible to produce unbiased predictions on the consequences of climate change and to devise suitable mitigation strategies for preserving Mediterranean forest ecosystems.

Keywords

Tree size Dendrochronology Tree-rings Aleppo pine Stone pine Climate–growth response Mediterranean 

References

  1. Beniston M (2002) Climate modelling at various spatial and temporal scales: where can dendrochronology help? Dendrochronologia 20:117–132. doi:10.1078/1125-7865-00012 CrossRefGoogle Scholar
  2. Biondi F, Waikul K (2004) DENDROCLIM2002: A C++ program for statistical calibration of climate signals in tree-ring chronologies. Comput Geosci 30:303–311. doi:10.1016/j.cageo.2003.11.004 CrossRefGoogle Scholar
  3. Campelo F, Nabais C, Freitas H, Gutiérrez E (2006) Climatic significance of tree-ring width and intra-annual density fluctuations in Pinus pinea from dry Mediterranean area in Portugal. Ann Sci 64:229–238Google Scholar
  4. Carrer M, Urbinati C (2004) Age-dependent tree-ring growth responses to climate in Larix decidua and Pinus cembra. Ecology 85:730–740. doi:10.1890/02-0478 CrossRefGoogle Scholar
  5. Chhin S, Hogg EH, Lieffers VJ, Huang S (2008) Potential effects of climate change on the growth of lodgepole pine across diameter size classes and ecological regions. For Ecol Manag 256:1692–1703. doi:10.1016/j.foreco.2008.02.046 CrossRefGoogle Scholar
  6. Cook E, Briffa K, Shiyatov S, Mazepa V (1990) Tree-ring standardization and growth-trend estimation. In: Cook ER, Kairiukstis LA (eds) Methods of dendrochronology. Kluwer Academic Publishers, Dordrecht, pp 104–123Google Scholar
  7. Copenheaver CA, Abrams MD (2003) Dendroecology in young stands: case studies from jack pine in northern lower Michigan. For Ecol Manag 182:247–257. doi:10.1016/S0378-1127(03)00049-5 CrossRefGoogle Scholar
  8. De Luis M, González-Hidalgo JC, Longares LA, Stepanek P Seasonal precipitation trends in Mediterranean Iberian Peninsula in second half of XX century. Int J Climatol (2009). doi:10.1002/joc.1778
  9. De Luis M, Gričar J, Čufar K, Raventós J (2007) Seasonal dynamics of wood formation in Pinus halepensis from dry and semi-arid ecosystems in Spain. IAWA J 28:389–404Google Scholar
  10. Di Filippo A, Biondi F, Čufar K, De Luis M, Grabner M, Maugeri M, Saba EP, Schirone B, Piovesan G (2007) Bioclimatology of beech (Fagus sylvatica L.) in the Eastern Alps: spatial and altitudinal climatic signals identified through a tree-ring network. J Biogeogr 34:1873–1892. doi:10.1111/j.1365-2699.2007.01747.x CrossRefGoogle Scholar
  11. Escarré A, Martín J, Seva E (1989) Estudio sobre el medio y la biocenosis en los arenales de la provincia de Alicante. Diputación provincial de Alicante, SpainGoogle Scholar
  12. Esper J, Cook ER, Schweingruber FH (2002) Low-frequency signals in long tree-ring chronologies for reconstructing past temperature variability. Science 295:2250–2253. doi:10.1126/science.1066208 PubMedCrossRefGoogle Scholar
  13. Esper J, Niederer R, Bebi P, Frank D (2008) Climate signal age effects-evidence from young and old trees in the Swiss Engadin. For Ecol Manag 255:3783–3789. doi:10.1016/j.foreco.2008.03.015 CrossRefGoogle Scholar
  14. Fritts HC (1976) Tree ring and climate. Academic Press, New YorkGoogle Scholar
  15. Fritts HC, Swetnam TW (1989) Dendroecology: a tool for evaluating variations in past and present forest environments. Adv Ecol Res 19:111–188. doi:10.1016/S0065-2504(08)60158-0 CrossRefGoogle Scholar
  16. Guiot J (1991) The bootstrapped response function. Tree-Ring Bull 51:39–41Google Scholar
  17. Holmes RL (1994) Dendrochronology program library user’s manual. Laboratory of tree-ring research. University of Arizona, TucsonGoogle Scholar
  18. Kaiser HF (1992) On Cliff’s formula, the Kaiser–Guttman rule, and the number of factors. Percept Mot Skills 74:595–598. doi:10.2466/PMS.74.2.595-598 CrossRefGoogle Scholar
  19. Mann ME, Bradley RS, Hughes MK (1998) Global-scale temperature patterns and climate forcing over the past six centuries. Nature 392:779–787. doi:10.1038/33859 CrossRefGoogle Scholar
  20. Melvin TM, Briffa KR (2008) A ‘‘signal-free’’ approach to dendroclimatic standardisation. Dendrochronologia 26:71–86. doi:10.1016/j.dendro.2007.12.001 CrossRefGoogle Scholar
  21. Mencuccini M, Martinez-Vilalta J, Vanderklein D, Hamid HA, Korakaki E, Lee S, Michiels B (2005) Size-mediated ageing reduces vigour in trees. Ecol Lett 8:1183–1190. doi:10.1111/j.1461-0248.2005.00819.x CrossRefGoogle Scholar
  22. Oberhuber W, Kofler W (2000) Topographic influences on radial growth of Scots pine (Pinus sylvestris L.) at small spatial scales. Plant Ecol 146:231–240. doi:10.1023/A:1009827628125 CrossRefGoogle Scholar
  23. Peñuelas J (2005) Plant physiology—a big issue for trees. Nature 437:965–966. doi:10.1038/437965a PubMedCrossRefGoogle Scholar
  24. Peñuelas J, Boada M (2003) A global change-induced biome shift in the Montseny mountains (NE Spain). Glob Change Biol 9:131–140. doi:10.1046/j.1365-2486.2003.00566.x CrossRefGoogle Scholar
  25. Rathgeber C, Nicault A, Guiot J, Keller T, Guibal F, Roche P (2000) Simulated responses of Pinus halepensis forest productivity to climatic change and CO2 increase using a statistical model. Global Planet Change 26:405–421. doi:10.1016/S0921-8181(00)00053-9 CrossRefGoogle Scholar
  26. Raventós J, de Luis M, Gras MJ, Čufar K, González-Hidalgo JC, Bonet A, Sánchez JR (2001) Growth of Pinus pinea and Pinus halepensis as affected by dryness and marine spray in a semiarid sand dune ecosystem. Dendrochronologia 19:211–220Google Scholar
  27. Richardson DM, Rundel PW (1998) Ecology and biogeography of pinus: an introduction. In: Richardson DM (ed) Ecology and biogeography of Pinus. Cambridge University Press, Cambridge, pp 3–46Google Scholar
  28. Rigling A, Waldner PO, Forster T, Bräker OU, Pouttu A (2001) Ecological interpretation of tree-ring width and intraannual density fluctuations in Pinus sylvestris on dry sites in the central Alps and Siberia. Can J Res 31:18–31. doi:10.1139/cjfr-31-1-18 CrossRefGoogle Scholar
  29. Schroter D, Cramer W, Leemans R, Prentice IC, Araujo MB, Arnell NW, Bondeau A, Bugmann H, Carter TR, Gracia CA, Vega-Leinert AC, Erhard M, Ewert F, Glendining M, House JI, Kankaanpaa S, Klein RJT, Lavorel S, Lindner M, Metzger MJ, Meyer J, Mitchell TD, Reginster I, Rounsevell M, Sabate S, Sitch S, Smith B, Smith J, Smith P, Sykes MT, Thonicke K, Thuiller W, Tuck G, Zaehle S, Zierl B (2005) Ecosystem service supply and vulnerability to global change in Europe. Science 310:1333–1337. doi:10.1126/science.1115233 PubMedCrossRefGoogle Scholar
  30. Vieira J, Campelo F, Nabais C (2009) Age-dependent responses of tree-ring growth and intra-annual density fluctuations of Pinus pinaster to Mediterranean climate. Trees (Berl) 23:257–265. doi:10.1007/s00468-008-0273-0 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • Martín De Luis
    • 1
  • Klemen Novak
    • 1
    • 2
    • 3
  • Katarina Čufar
    • 2
  • José Raventós
    • 3
  1. 1.Departamento de Geografía y O.T. C/Pedro Cerbuna 12Universidad de ZaragozaZaragozaSpain
  2. 2.Biotechnical Faculty, Department of Wood Science and TechnologyUniversity of LjubljanaLjubljanaSlovenia
  3. 3.Departamento de EcologíaUniversidad de AlicanteSan Vicente del RaspeigSpain

Personalised recommendations