, Volume 23, Issue 4, pp 835–842 | Cite as

Micropropagation of adult Stone Pine (Pinus pinea L.)

  • Millán Cortizo
  • Nuria de Diego
  • Paloma Moncaleán
  • Ricardo Javier Ordás
Original Paper


This paper describes a micropropagation protocol for in vitro propagation of mature Stone Pine trees. Axillary bud development was achieved by culturing bud explants in media containing various cytokinins. Experiments were conducted to test the effect of asepsis conditions, type and concentration of cytokinin and rooting protocol. Four cytokinins were tested, namely, benzyladenine, meta-topolin, N-benzyl-9-(2-tetrahydropyranyl)-adenine and thidiazuron (TDZ) of which TDZ gave the best results, as 59% shoot development was obtained following the application of 1 μM TDZ to the culture medium. The shoot development was significantly influenced by the genotype of the tree, but was effective in explants from all 20 genotypes used in the trial. In vitro rooting was, however, difficult to achieve and could only be induced at low rates. This protocol represents the first successful biotechnological approach to the micropropagation of adult Pinus pinea trees.


In vitro culture Conifer Axillary shoot formation Stone Pine Micropropagation 



The authors sincerely thank Ronnie Lendrum for English revision, and Patxi Saez de Urturi, Ander Isasmendi and Elena Fernández de Larrinoa (Neiker—Tecnalia) for their technical assistance. This work was supported by “Ministerio de Ciencia y Tecnología de España” (MEC-AGL-2005-08214). Millán Cortizo was supported by an FPU grant from the Spanish Ministry of Education. Nuria de Diego was supported by FT grant from the Basque Government.


  1. Abdullah AA, Yeoman MM, Grace J (1987) Micropropagation of mature Calabrian pine (Pinus brutia Ten.) from fascicular buds. Tree Physiol 3:123–136PubMedGoogle Scholar
  2. Ahuja MR (1993) Biotechnology and clonal forestry. In: Ahuja MR, Libby WJ (eds) Clonal forestry I, genetics and biotechnology. Springer, Berlin, pp 135–144Google Scholar
  3. Aitken-Christie J, Singh A, Davies H (1988) Multiplication of meristematic tissue: a new tissue culture system for radiata pine. In: Hanover JW, Keathley DE (eds) Genetic manipulation of woody plants. Plenum Publishing Corporation, New York, pp 413–432Google Scholar
  4. Alonso P, Moncaleán P, Fernández B, Rodríguez A, Centeno ML, Ordás RJ (2006) An improved micropropagation method for Stone Pine (Pinus pinea L.). Ann For Sci 63:879–885. doi: 10.1051/forest:2006071 CrossRefGoogle Scholar
  5. Campbell M, Brunner AM, Jones H, Strauss SH (2003) Forestry’s fertile crescent: the application of biotechnology to forest trees. Plant Biotechnol J 1:141–154. doi: 10.1046/j.1467-7652.2003.00020.x PubMedCrossRefGoogle Scholar
  6. Catalán G (1998) Current situation and prospects of the stonepines as nut producers. FAO-CIHEAM. Nucis Newsl 7:28–32Google Scholar
  7. Chalupa V (1989) Micropropagation of Larix decidua Mill. and Pinus sylvestris L. Biol Plant 31(5):400–407. doi: 10.1007/BF02876363 CrossRefGoogle Scholar
  8. Chang SH, Ho CK, Chen ZZ, Tsay JY (2001) Micropropagation of Taxus mairei from mature trees. Plant Cell Rep 20:496–502. doi: 10.1007/s002990100362 CrossRefGoogle Scholar
  9. Cortizo M, Alonso P, Fernández B, Rodríguez A, Centeno ML, Ordás RJ (2004) Micrografting of mature stone pine (Pinus pinea L.) trees. Ann For Sci 61:843–845. doi: 10.1051/forest:2004081 CrossRefGoogle Scholar
  10. Dumas E, Monteuuis O (1995) In vitro rooting of micropropagated shoots from juvenile and mature Pinus pinaster explants: influence of activated charcoal. Plant Cell Tissue Organ Cult 40:231–235. doi: 10.1007/BF00048128 CrossRefGoogle Scholar
  11. Ewald D (1998) Advances in tissue culture of adult larch. In Vitro Cell Dev Biol Plant 34:325–330. doi: 10.1007/BF02822742 CrossRefGoogle Scholar
  12. FAO (2004) Preliminary review of biotechnology in forestry, including genetic modification. Forest genetic resources working paper FGR/59E. Forest Resources Development Service, Forest Resources Division, RomeGoogle Scholar
  13. Greenwood MS (1995) Juvenility and maturation in conifers: current concepts. Tree Physiol 15:433–438PubMedCrossRefGoogle Scholar
  14. Hackett WP (1988) Donor plant maturation and adventitious root formation. In: Davis TD, Hassing BE, Sankhla N (eds) Aventitious root formation in cuttings. Dioscorides Press, Portland, pp 11–28Google Scholar
  15. Hohtola A (1988) Seasonal changes in explant viability and contamination of tissue cultures from mature Scots pine. Plant Cell Tissue Organ Cult 15:211–222. doi: 10.1007/BF00033645 CrossRefGoogle Scholar
  16. Horgan KJ (1987) Pinus radiata. In: Bonga JM, Durzan DJ (eds) Cell and tissue culture in forestry. Martinus Nijhoff, Dordrecht, pp 128–145Google Scholar
  17. Kunze I (1994) Influence of the genotype on growth of Norway spruce (Picea abies L.) in in vitro meristem culture. Silvae Genet 43(1):36–41Google Scholar
  18. Merkle SA, Dean JF (2000) Forest tree biotechnology. Curr Opin Biotechnol 11:298–302. doi: 10.1016/S0958-1669(00)00099-9 PubMedCrossRefGoogle Scholar
  19. Murthy B, Murch SJ, Saxena PK (1998) Thidiazuron: a potent regulator of in vitro plant morphogenesis. In Vitro Cell Dev Biol Plant 34:267–275. doi: 10.1007/BF02822732 CrossRefGoogle Scholar
  20. Mutke S, Gordo J, Gil L (2000) The stone pine (Pinus pinea L.) breeding programme in Castile-León (Central Spain). FAO-CIHEAM. Nucis Newsl 9:50–55Google Scholar
  21. Parasharami VA, Poonawala IS, Nadgauda RS (2003) Bud break and plantlet regeneration in vitro from mature trees of Pinus roxburghii Sarg. Curr Sci 84:203–208Google Scholar
  22. Prehn D, Serrano C, Mercado A, Stange C, Barrales L, Arce-Johnson P (2003) Regeneration of whole plants from apical meristems of Pinus radiata. Plant Cell Tissue Organ Cult 73:91–94. doi: 10.1023/A:1022615212607 CrossRefGoogle Scholar
  23. Renau-Morata B, Ollero J, Arrillaga I, Segura J (2005) Factors influencing axillary shoot proliferation and adventitious budding in cedar. Tree Physiol 25:477–486PubMedGoogle Scholar
  24. Spichal L, Rakova NY, Riefler M, Mizuno T, Romanov GA, Strnad M, Schmulling T (2004) Two cytokinin receptors of Arabidopsis thaliana, CRE1/AHK4 and AHK3, differ in their ligand specificity in a bacterial assay. Plant Cell Physiol 45:1299–1305. doi: 10.1093/pcp/pch132 PubMedCrossRefGoogle Scholar
  25. Stange C, Prehn D, Gebauer M, Arce-Johnson P (1999) Optimization of in vitro culture conditions for Pinus radiata embryos and histological characterization of regenerated shoots. Biol Res 32:19–28Google Scholar
  26. Sul IW, Korban SS (2004) Effects of salt formulations, carbon sources, cytokinins, and auxin on shoot organogenesis from cotyledons of Pinus pinea L. Plant Growth Regul 43:197–205. doi: 10.1023/B:GROW.0000046013.47892.4f CrossRefGoogle Scholar
  27. Tang W, Guo Z (2001) In vitro propagation of loblolly pine via direct somatic organogenesis from mature cotyledons and hypocotyls. Plant Growth Regul 33:25–31. doi: 10.1023/A:1010764816523 CrossRefGoogle Scholar
  28. Tang W, Newton RJ (2005) Peroxidase and catalase activities are involved in direct adventitious shoot formation induced by thidiazuron in eastern white pine (Pinus strobus L.) zygotic embryos. Plant Physiol Biochem 43:760–769. doi: 10.1016/j.plaphy.2005.05.008 PubMedCrossRefGoogle Scholar
  29. Tereso S, Gonçalves S, Marum L, Oliveira M, Maroco J, Miguel C (2006) Improved axillary and adventitious bud regeneration from Portuguese genotypes of Pinus pinaster. Propag Ornam Plants 6:24–33Google Scholar
  30. von Aderkas P, Bonga JM (2000) Influencing micropropagation and somatic embryogenesis in mature trees by manipulation of phase change, stress and culture environment. Tree Physiol 20:921–928Google Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  1. 1.Área de Fisiología Vegetal, Dpto. Biología de Organismos y Sistemas, Instituto de Biotecnología de AsturiasUniversidad de OviedoOviedoSpain
  2. 2.Neiker-Tecnalia, Instituto Vasco de Investigación y Desarrollo AgrarioCentro ArkauteVitoria-GasteizSpain

Personalised recommendations