, 23:683 | Cite as

Diurnal and annual rhythms in trees

  • Ulrich LüttgeEmail author
  • Brigitte Hertel


Trees, perennial phanerophytes, display a rich variety of rhythmic phenomena. These are either due to exclusive environmental entrainment or due to the functioning of endogenous oscillators independent of the environment. Both types of rhythms are covered in this review. Purely environment controlled rhythms may be considered as a prelude to endogenous rhythms. Environment controlled rhythms discussed are (i) the diurnal rhythms of nyctinastic and heliotropic leaf movements and oscillatory phenomena of photosynthesis, such as the midday depression and Crassulacean acid metabolism (CAM), and (ii) the annual rhythms of annual growth ring formation, autumnal leaf senescence, over wintering mechanisms and flowering. Among the diurnal rhythms, nyctinastic movements and CAM are also free-running endogenous rhythms showing the operation of circadian clocks in trees. In leaf senescence, over wintering, and flowering control, photoperiod sensing is involved which suggests the participation of endogenous clocks. A question asked is if diurnal and annual rhythms are mechanistically correlated. Evidently, phenological phenomena based on photoperiodism (as dependent on measurement of night length) are co-ordinately regulated by the phytochrome system and the circadian clocks and many aspects of annual developments and over wintering are linked to photoperiodism. The existence in trees of circadian clock genes as known to be anchored in the genome of A. thaliana can be assessed by attempts of alignment with the sequenced genome of Populus or by isolating cDNA clones from trees to check them against the genome of A. thaliana. At extreme latitudes near the equator and north of the polar circle trees also display photoperiod-independent phenological phenomena. In the polar region, total irradiance of red and far red light could possibly be involved and the signalling pathway then involves phytochrome, and thus, may still be similar to that of photoperiodism. At the equator, total daily light irradiance received or sensing the dynamics of daily changes in solar irradiance are essential and it remains enigmatic whether signalling cascades are either attached to the circadian clocks in a still unknown way or totally independent of circadian clocks.


Annual growth rings Autumnal leaf senescence Biological clock Circadian rhythms Flowering Heliotropism Midday depression Nyctinastic movements Over wintering Phenology Photoperiod 


  1. Andersson A, Keskitalo J, Sjödin A, Bhalerao R, Sterky F, Wissel K, Tandre K, Aspeborg H, Moyle R, Ohmiya Y et al (2004) A transcriptional time table of autumn senescence. Genome Biol 5R:24. doi: 10.1186/gb-2004-5-4-r24 Google Scholar
  2. Barbour MM, Walcroft AS, Farquhar GD (2002) Seasonal variation in δ13C and δ18O of cellulose from growth rings of Pinus radiata. Plant Cell Environ 25:1483–1499. doi: 10.1046/j.0016-8025.2002.00931.x Google Scholar
  3. Bauch J, Eckstein D (1981) Wood biological investigations on panels of Rembrandt paintings. Wood Sci Technol 15:251–263. doi: 10.1007/BF00350943 Google Scholar
  4. Bieniawska Z, Espinoza C, Schlereth A, Sulpize R, Hincha DK, Hannah MA (2008) Disruption of the Arabidopsis circadian clock is responsible for extensive variation in the cold-responsive transcriptome. Plant Physiol 147:263–279. doi: 10.1104/pp.108.118059 PubMedGoogle Scholar
  5. Bigras FJ, Colombo SJ (2001) Conifer cold hardiness. Kluwer, DordrechtGoogle Scholar
  6. Björkman O, Demmig B (1987) Photon yield of O2 evolution and chlorophyll fluorescence characteristics at 77 K among vascular plants of diverse origins. Planta 170:489–504. doi: 10.1007/BF00402983 Google Scholar
  7. Böhlenius H, Huang T, Charbonnel-Campaa L, Brunner AM, Jansson S, Strauss SH, Nilsson O (2006) CO/FT regulatory module controls timing of flowering and seasonal growth cessation in trees. Science 312:1040–1043. doi: 10.1126/science.1126038 PubMedGoogle Scholar
  8. Bohn A, Rascher U, Hütt M-T, Kaiser F, Lüttge U (2002) Responses of a plant circadian rhythm to thermoperiodic perturbations with asymmetric temporal patterns and the rate of temperature change. Biol Rhythm Res 33:151–170. doi: 10.1076/brhm. Google Scholar
  9. Bohn A, Hinderlich S, Hütt M-T, Kaiser F, Lüttge U (2003) Identification of rhythmic subsystems in the circadian cycle of Crassulacean acid metabolism under thermoperiodic perturbations. Biol Chem 384:721–728. doi: 10.1515/BC.2003.080 PubMedGoogle Scholar
  10. Borchert R (2000) Organismic and environmental controls of bud growth in tropical trees: In: Viemont JD, Crabbè J (eds) Dormancy in plants: from whole plant behaviour to cellular control. CAB International Wallingford, pp 87–107Google Scholar
  11. Borchert R, Rivera G (2001) Photoperiodic control of seasonal development and dormancy in tropical stem-succulent trees. Tree Physiol 21:213–221PubMedGoogle Scholar
  12. Borchert R, Renner SS, Calle Z, Navarrete D, Tye A, Gautier L, Spichiger R, von Hildebrand P (2005) Photosynthetic induction of synchronous flowering near the equator. Nature 433:627–629. doi: 10.1038/nature03259 PubMedGoogle Scholar
  13. Borchert R, Schlumpberger BO, Calle Z, Piedrahita L, Leftin A, Hammer SA, Tye A, Renner SS (2008) Seasonal variation in insolation is the time giver for synchronous flowering between the equator and 50°N. Submitted manuscript under review, made available as personal communicationGoogle Scholar
  14. Boxall SF, Foster JM, Bohnert HJ, Cushman JC, Nimmo HG, Hartwell J (2005) Conservation and divergence of circadian clock operation in a stress-inducible Crassulacean acid metabolism species reveals clock compensation against stress. Plant Physiol 137:969–982. doi: 10.1104/pp.104.054577 PubMedGoogle Scholar
  15. Briffa KR, Bartholin TS, Eckstein D, Jones PD, Karlén W, Schweingruber FH, Zetterberg P (1990) A 1400-year tree-ring record of summer temperatures in Fennoscandia. Nature 346:434–439. doi: 10.1038/346434a0 Google Scholar
  16. Briffa KR, Jones PD, Schweingruber FH, Shiyatov SG, Cook ER (1995) Unusual twentieth-century summer warmth in a 1000-year temperature record from Siberia. Nature 376:156–159. doi: 10.1038/376156a0 Google Scholar
  17. Bucci SJ, Scholz FG, Goldstein G, Meinzer FC, Sternberg L da Sl (2003) Dynamic changes in hydraulic conductivity in petioles of two savanna tree species: factors and mechanisms contributing to the refilling of embolized vessels. Plant Cell Environ 26:1633–1645. doi: 10.1046/j.0140-7791.2003.01082.x Google Scholar
  18. Buchanan-Wollaston V (1997) The molecular biology of leaf senescence. J Exp Bot 48:181–199. doi: 10.1093/jxb/48.2.181 Google Scholar
  19. Caldas LS, Lüttge U, Franco AC, Haridasan M (1997) Leaf heliotropism in Pterodon pubescens, a woody legume from the Brazilian cerrado. Rev Bras Fisiol Vegetal 9:1–7Google Scholar
  20. Callado CH, da Silva Neto SJ, Scarano FR, Costa CG (2001) Periodicity of growth rings in some flood-prone trees of the Atlantic Rain Forest in Rio de Janeiro, Brazil. Trees (Berl) 15:492–497Google Scholar
  21. Coster C (1927) Zur Anatomie und Physiologie der Zuwachszonen und Jahresringbildung in den Tropen I. Ann Jard Buitenzorg 37:49–161Google Scholar
  22. Coster C (1928) Zur Anatomie und Physiologie der Zuwachszonen und Jahresringbildung in den Tropen II. Ann Jard Buitenzorg 38:1–114Google Scholar
  23. Coté GG, DePass AL, Quarmby LM, Tate BF, Morse MJ, Satter RL, Crain RC (1989) Separation and characterisation of inositol phospholipids from the pulvini of Samanea saman. Plant Physiol 90:1422–1428. doi: 10.1104/pp.90.4.1422 PubMedGoogle Scholar
  24. De Mairan J (1729) Observation botanique. In: Histoire de l’Académie Royale des Sciences, Acad Roy Sci, Paris, pp 35–36Google Scholar
  25. De Mattos EA, Lobo PC, Joly CA (2002) Overnight rainfall inducing rapid changes in photosynthetic behaviour in a cerrado woody species during a dry spell amidst the rainy season. Aust J Bot 50:241–246. doi: 10.1071/BT01023 Google Scholar
  26. Denne MP (1971) Temperature and tracheid development in Pinus sylvestris seedlings. J Exp Bot 22:362–370. doi: 10.1093/jxb/22.2.362 Google Scholar
  27. Denne MP, Dodd RS (1981) The environmental control of xylem differentiation. In: Barnett JR (ed) Xylem cell development. Castle House, Kent, pp 236–255Google Scholar
  28. Dodd AN, Salathia N, Hall A, Kevei E, Toth R, Nagy F, Hibberd JM, Millar AJ, Webb AAR (2005) Plant circadian clocks increase photosynthesis, growth, survival, and competitive advantage. Science 309:630–633. doi: 10.1126/science.1115581 PubMedGoogle Scholar
  29. Domec J-C, Scholz FG, Bucci SJ, Meinzer FC, Goldstein G, Villalobos-Vega R (2006) Diurnal and seasonal variation in root xylem embolism in neotropical savanna woody species: impact on stomatal control of plant water status. Plant Cell Environ 29:26–35. doi: 10.1111/j.1365-3040.2005.01397.x PubMedGoogle Scholar
  30. Dore J (1959) Response of rice to small differences in length of day. Nature 183:413–414. doi: 10.1038/183413a0 Google Scholar
  31. Duarte HM, Lüttge U (2007) Circadian rhythmicity. In: Lüttge U (ed) Clusia. A woody neotropical genus of remarkable plasticity and diversity. Ecological studies, vol 194. Springer, Berlin, pp 245–256Google Scholar
  32. Dünisch O, Montóia VR, Bauch J (2003) Dendroecological investigations on Swietenia macrophylla King and Cedrela odorata L. (Melicaceae) in the central Amazon. Trees (Berl) 17:244–250Google Scholar
  33. Dupouey J-L, Leavitt S, Choisnel E, Jourdain S (1993) Modelling carbon isotope fractionation in tree rings based on effective evapotranspiration and soil water status. Plant Cell Environ 16:939–947. doi: 10.1111/j.1365-3040.1993.tb00517.x Google Scholar
  34. Eckstein D (2004) Change in past environments—secrets of the tree hydrosystem. New Phytol 163:1–4. doi: 10.1111/j.1469-8137.2004.01117.x Google Scholar
  35. Edwards TDW, Graf W, Trimborn P, Stichler W, Lipp J, Payer HD (2000) δ13C response surface resolves humidity and temperature signals in trees. Geochim Cosmochim Acta 64:161–167. doi: 10.1016/S0016-7037(99)00289-6 Google Scholar
  36. Ehleringer J, Forseth I (1980) Solar tracking by plants. Science 210:1094–1098. doi: 10.1126/science.210.4474.1094 PubMedGoogle Scholar
  37. Fonti P, García-González I (2004) Suitability of chestnut earlywood vessel chronologies for ecological studies. New Phytol 163:77–86. doi: 10.1111/j.1469-8137.2004.01089.x Google Scholar
  38. Fowler SG, Cook D, Thomashow MF (2005) Low temperature induction of Arabidopsis CBF1, 2 and 3 is gated by the circadian clock. Plant Physiol 137:961–968. doi: 10.1104/pp.104.058354 PubMedGoogle Scholar
  39. Franco AC, Lüttge U (2002) Midday depression in savanna trees: coordinated adjustments in photochemical efficiency, photorespiration, CO2 assimilation and water use efficiency. Oecologia 131:356–365. doi: 10.1007/s00442-002-0903-y Google Scholar
  40. Fritts HC (1976) Tree rings and climate. Academic Press, LondonGoogle Scholar
  41. Gourlay ID (1995) Growth ring characteristics of some African Acacia species. J Trop Ecol 11:121–140CrossRefGoogle Scholar
  42. Heide OM (1974) Growth and dormancy in Norway spruce ecotypes (Picea abies). I. Interaction of photoperiod and temperature. Physiol Plant 30:1–12. doi: 10.1111/j.1399-3054.1974.tb04983.x Google Scholar
  43. Helle G, Schleser GH (2004) Beyond CO2-fixation by Rubisco—an interpretation of 13C/12C variations in tree rings from novel intra-seasonal studies on broadleaf trees. Plant Cell Environ 27:367–380. doi: 10.1111/j.0016-8025.2003.01159.x Google Scholar
  44. Hillman WS, Koukari WL (1967) Phytochrome effects in the nyctinastic leaf movements of Albizzia julibrissin and some other legumes. Plant Physiol 42:1413–1418. doi: 10.1104/pp.42.10.1413 PubMedGoogle Scholar
  45. Hütt M-T, Lüttge U (2005) Network dynamics in plant biology: current progress in historical perspective. Prog Bot 66:277–310. doi: 10.1007/3-540-27043-4_12 Google Scholar
  46. Johnsen Ø, Dæhlen OG, Østreng G, Skrøppa T (2005a) Daylength and temperature during seed production interactively affect adaptive performance of Picea abies progenies. New Phytol 168:589–596. doi: 10.1111/j.1469-8137.2005.01538.x PubMedGoogle Scholar
  47. Johnsen Ø, Fossdal CG, Nagy N, Mølmann J, Dæhlen OG, Skrøppa T (2005b) Climatic adaptation in Picea abies progenies is affected by the temperature during zygotic embryogenesis and seed maturation. Plant Cell Environ 28:1090–1102. doi: 10.1111/j.1365-3040.2005.01356.x Google Scholar
  48. Johnson CH, Golden SS (1999) Circadian programs in cyanobacteria: adaptiveness and mechanisms. Annu Rev Microbiol 53:389–409. doi: 10.1146/annurev.micro.53.1.389 PubMedGoogle Scholar
  49. Jordan BR (ed) (2006) The molecular biology and biotechnology of flowering, 2nd edn. CAB International, WallingfordGoogle Scholar
  50. Junttila O (1976) Apical growth cessation and shoot tip abscission in Salix. Physiol Plant 38:278–286. doi: 10.1111/j.1399-3054.1976.tb04004.x Google Scholar
  51. Junttila O (1980) Effect of photoperiod and temperature on apical growth cessation in two ecotypes of Salix and Betula. Physiol Plant 48:347–352. doi: 10.1111/j.1399-3054.1980.tb03266.x Google Scholar
  52. Junttila O (2007) Regulation of annual shoot growth cycle in northern tree species. In: Taulavuori E, Taulavuori K (eds) Physiology of northern plans under changing environment. Research Signpost, Kerala, pp 177–210Google Scholar
  53. Keskitalo J, Bergquist G, Gardeström P, Jansson S (2005) A cellular timetable of autumn senescence. Plant Physiol 139:1635–1648. doi: 10.1104/pp.105.066845 PubMedGoogle Scholar
  54. Kienast F, Schweingruber FH, Bräker OU, Schär E (1987) Tree-ring studies on conifers along ecological gradients and the potential of single-year analyses. Can J For Res 17:683–696. doi: 10.1139/x87-111 Google Scholar
  55. Kim HJ, Coté GG, Crain RC (1992) Effects of light on the membrane potential of protoplasts from Samanea saman pulvini. Involvement of K+ channels and the H+-ATPase. Plant Physiol 99:1532–1539. doi: 10.1104/pp.99.4.1532 PubMedGoogle Scholar
  56. Kim HJ, Coté GG, Crain RC (1993) Potassium channels in Samanea saman protoplasts controlled by phytochrome and the biological clock. Science 260:960–962. doi: 10.1126/science.260.5110.960 PubMedGoogle Scholar
  57. Kim HJ, Coté GG, Crain RC (1996) Inositol 1, 4, 5-triphosphate may mediate closure of K+ channels by light and darkness in Samanea saman motor cells. Planta 198:279–287. doi: 10.1007/BF00206254 PubMedGoogle Scholar
  58. Koller D (1990) Light driven leaf movements. Plant Cell Environ 13:615–632. doi: 10.1111/j.1365-3040.1990.tb01079.x Google Scholar
  59. Kosová K, Vítámvás P, Prášil IT (2007) The role of dehydrins in plant response to cold. Biol Plant 51:601–617. doi: 10.1007/s10535-007-0133-6 Google Scholar
  60. Lee Y, Satter RJ (1987) H+-uptake and release during circadian rhythmic movements of excised Samanea motor organs. Plant Physiol 83:856–862. doi: 10.1104/pp.83.4.856 PubMedGoogle Scholar
  61. Lee Y, Satter RJ (1989) Effects of white, blue and red light and darkness on pH of the apoplast in the Samanea pulvinus. Planta 178:31–40. doi: 10.1007/BF00392524 Google Scholar
  62. Lee DW, O’Keele J, Holbrook NM, Feild TS (2003) Pigment dynamics and autumn leaf senescence in a New England deciduous forest, eastern USA. Ecol Res 18:677–694. doi: 10.1111/j.1440-1703.2003.00588.x Google Scholar
  63. Lim PO, Kim HJ, Nam HG (2007) Leaf senescence. Annu Rev Plant Biol 58:115–136. doi: 10.1146/annurev.arplant.57.032905.105316 PubMedGoogle Scholar
  64. Lipavská H, Svobodová H, Albrechtová J (2001) Annual dynamics of the content of non-structural saccharides in the context of structural development of vegetative buds of Norway spruce. J Plant Physiol 157:365–373Google Scholar
  65. Liu Y, Tsinoremans NF, Johnson CH, Lebedeca NV, Golden SS, Ishiura M, Kondo TI (1995) Circadian orchestration of gene expression in cyanobacteria. Genes Dev 9:1469–1478. doi: 10.1101/gad.9.12.1469 PubMedGoogle Scholar
  66. Lloyd D (2006) Ultradian rhythms and clocks in plants and yeast. Biol Rhythm Res 37:281–296. doi: 10.1080/09291010600804379 Google Scholar
  67. Lloyd D, Murray DB (2005) Ultradian metronome: timekeeper for orchestration of cellular coherence. Trends Biochem Sci 30:373–377. doi: 10.1016/j.tibs.2005.05.005 PubMedGoogle Scholar
  68. Lloyd D, Murray DB (2007) Redox rhythmicity: clocks at the core of temporal coherence. Bioessays 29:465–473. doi: 10.1002/bies.20575 PubMedGoogle Scholar
  69. Lüttge U (2000) The tonoplast functioning as the master switch for circadian regulation of Crassulacean acid metabolism. Planta 211:761–769. doi: 10.1007/s004250000408 PubMedGoogle Scholar
  70. Lüttge U (2003a) Circadian rhythmicity: is the “biological clock” hardware or software? Prog Bot 64:277–319Google Scholar
  71. Lüttge U (2003b) Circadian rhythms. In: Thomas B, Murphy DJ, Murray BG (eds) Encyclopedia of applied plant sciences. Elsevier, Academic Press, Amsterdam, pp 1084–1096Google Scholar
  72. Lüttge U (2004) Ecophysiology of Crassulacean acid metabolism (CAM). Ann Bot (Lond) 94:629–652. doi: 10.1093/aob/mch087 Google Scholar
  73. Lüttge U (2006) Photosynthetic flexibility and ecophysiological plasticity: questions and lessons from the genus Clusia, the only CAM tree, in the neotropics. New Phytol 171:7–25. doi: 10.1111/j.1469-8137.2006.01755.x PubMedGoogle Scholar
  74. Lüttge U (ed 2007a) Clusia. A woody neotropical genus of remarkable plasticity and diversity. Ecological studies, vol 194. Springer, BerlinGoogle Scholar
  75. Lüttge U (2007b) Photosynthesis. In: Lüttge U (ed) Clusia. A woody neotropical genus of remarkable plasticity and diversity. Ecological studies, vol 194. Springer, Berlin, pp 135–186Google Scholar
  76. Lüttge U (2008a) Stem CAM in arborescent succulents. Trees (Berl) 22:139–148. doi: 10.1007/s00468-007-0198-z Google Scholar
  77. Lüttge U (2008b) Clusia: Holy grail and enigma. J Exp Bot 59:1503–1514. doi: 10.1093/jxb/ern006 PubMedGoogle Scholar
  78. Lüttge U, Beck F (1992) Endogenous rhythms and chaos in Crassulacean acid metabolism. Planta 188:28–38. doi: 10.1007/BF01160709 Google Scholar
  79. Lüttge U, Higinbotham N (1979) Transport in plants. Springer, New YorkGoogle Scholar
  80. Lüttge U, Klauke B, Griffiths H, Smith JAC, Stimmel K-H (1986) Comparative ecophysiology of CAM and C3 bromeliads. V. Gas exchange and leaf structure of the C3 bromeliad Pitcairnia integrifolia. Plant Cell Environ 9:411–419. doi: 10.1111/j.1365-3040.1986.tb01754.x
  81. Matile P (1992) Chloroplast senescence. In: Baker NR, Thomas H (eds) Crop photosynthesis: spatial and temporal determinants. Elsevier, Amsterdam, pp 413–440Google Scholar
  82. Matile P, Winkenbach F (1971) Function of lysosomes and lysosomal enzymes in the senescing corolla of the morning glory (Ipomoea purpurea). J Exp Bot 22:759–771. doi: 10.1093/jxb/22.4.759 Google Scholar
  83. McClung CR (2000) Circadian rhythms in plants: a millennium view. Physiol Plant 109:359–371. doi: 10.1034/j.1399-3054.2000.100401.x Google Scholar
  84. Medina E (1982) Physiological ecology of neotropical savanna plants. In: Huntles BJ, Walker BH (eds) Ecoloical studies, vol 42: ecology of tropical savannas. Springer, Berlin, pp 308–335Google Scholar
  85. Michael TP, McClung CR (2003) Enhancer trapping reveals widespread circadian clock transcriptional control in Arabidopsis. Plant Physiol 132:629–639. doi: 10.1104/pp.021006 PubMedGoogle Scholar
  86. Mølmann JA, Junttila O, Johnsen Ø, Olsen JE (2006) Effects of red, far red and blue light in maintaining growth in latitudinal populations of Norway spruce (Picea abies). Plant Cell Environ 29:166–172. doi: 10.1111/j.1365-3040.2005.01408.x PubMedGoogle Scholar
  87. Moran N, Ehrenstein G, Iwasa K, Mischke C, Bare C, Satter RL (1988) Potassium channels in motor cells of Samanea saman. A patch clamp study. Plant Physiol 88:643–648. doi: 10.1104/pp.88.3.643 PubMedGoogle Scholar
  88. Moshelion M, Moran N (2000) Potassium-efflux channels in extensor and flexor cells of the motor organ of Samanea saman are not identical. Effects of cytosolic calcium. Plant Physiol 124:911–919. doi: 10.1104/pp.124.2.911 PubMedGoogle Scholar
  89. Moshelion N, Becker D, Biela A, Uehlein N, Hedrich R, Otto B, Levi H, Moran N, Kaldenhoff R (2002) Plasma membrane aquaporins in the motor cells of Samanea saman: diurnal and circadian regulation. Plant Cell 14:727–739. doi: 10.1105/tpc.010351 PubMedGoogle Scholar
  90. Nimmo HG (2000) The regulation of phosphoenolpyruvate carboxylase in CAM plants. Trends Plant Sci 5:75–80. doi: 10.1016/S1360-1385(99)01543-5 PubMedGoogle Scholar
  91. Njoku E (1963) Seasonal periodicity in the growth and development of some forest trees in Nigeria. J Ecol 51:617–624. doi: 10.2307/2257750 Google Scholar
  92. Olsen JE, Junttila O (2002) Far red end-of-day treatment restores wild type-like plant length in hybrid aspen overexpressing phytochrome A. Physiol Plant 115:448–457. doi: 10.1034/j.1399-3054.2002.1150315.x PubMedGoogle Scholar
  93. Ouyang Y, Andersson CR, Kondo T, Golden SS, Johnson CH (1998) Resonating circadian clocks enhance fitness in cyanobacteria. Proc Natl Acad Sci USA 95:8660–8664. doi: 10.1073/pnas.95.15.8660 PubMedGoogle Scholar
  94. Pathre U, Sinha AK, Shirke PA, Sane PV (1998) Factors determining the midday depression of photosynthesis in trees under monsoon climate. Trees (Berl) 12:472–481. doi: 10.1007/s004680050177 Google Scholar
  95. Penfield S (2008) Temperature perception and signal transduction in plants. New Phytol 179:615–628. doi: 10.1111/j.1469-8137.2008.02478.x PubMedGoogle Scholar
  96. Pfeffer W (1907) Untersuchungen über die Entstehung der Schlafbewegungen der Blattorgane. Abh Math Phys Kl Kgl Sächs Ges Wiss 30 III:259–472Google Scholar
  97. Pfeffer W (1915) Beiträge zur Kenntnis der Entstehung der Schlafbewegungen. Abh Math Phys Kl Kgl Sächs Ges Wiss 34 I:1–154Google Scholar
  98. Puhakainen T, Li C, Boije-Malm M, Kangasjärvi J, Heino P, Palva ET (2004) Short-day potentiation of low temperature-induced gene expression of a C-repeat-binding factor-controlled gene during cold acclimation in silver birch. Plant Physiol 136:4299–4307. doi: 10.1104/pp.104.047258 PubMedGoogle Scholar
  99. Racusen RH, Satter RL (1975) Rhythmic and phytochrome-regulated changes in transmembrane potential in Samanea pulvini. Nature 225:408–410. doi: 10.1038/255408a0 Google Scholar
  100. Ramos A, Pérez-Solís E, Ibáñez C, Casado R, Collada C, Gómez L, Aragoncillo C, Allona I (2005) Winter disruption of the circadian clock in chestnut. Proc Natl Acad Sci USA 102:7037–7042. doi: 10.1073/pnas.0408549102 PubMedGoogle Scholar
  101. Reich PB, Borchert R (1984) Water stress and tree phenology in a tropical dry forest in the lowlands of Costa Rica. J Ecol 72:61–74. doi: 10.2307/2260006 Google Scholar
  102. Renner SS (2007) Synchronous flowering linked to changes in solar radiation intensity. New Phytol 175:195–197. doi: 10.1111/j.1469-8137.2007.02132.x PubMedGoogle Scholar
  103. Rinne P, Welling A, Kaikuranta P (1998) Onset of freezing tolerance in birch (Betula pubescens Ehrh.) involves LEA proteins and osmoregulation and is impaired in an ABA-deficient genotype. Plant Cell Environ 21:601–611. doi: 10.1046/j.1365-3040.1998.00306.x
  104. Rivera G, Borchert R (2001) Induction of flowering in tropical trees by a 30-min reduction in photoperiod: evidence from field observations and herbarium collections. Tree Physiol 21:201–212PubMedGoogle Scholar
  105. Rivera G, Elliott S, Caldas LS, Nicolossi G, Coradin VTR, Borchert R (2002) Increasing day-length induces spring flushing of tropical dry forest trees in the absence of rain. Trees (Berl) 16:445–456. doi: 10.1007/s00468-002-0185-3 Google Scholar
  106. Rohde A, Howe GT, Olsen JE, Moritz T, van Mongtagu M, Junttila O, Boerjan W (2000) Molecular aspects of bud dormancy in trees. In: Jain SM, Minocha SC (eds) Molecular biology of woody plants, vol 1. Kluwer, Dordrecht, pp 89–134Google Scholar
  107. Rolland F, Baena-Gonzalez E, Sheen J (2006) Sugar sensing and signalling in plants: conserved and novel mechanisms. Annu Rev Plant Biol 57:675–709. doi: 10.1146/annurev.arplant.57.032905.105441 PubMedGoogle Scholar
  108. Ruttink T, Arend M, Morreel K, Storme V, Rombauts S, Fromm J, Bhalerao RP, Boerjan W, Rohde A (2007) A molecular timetable for apical bud formation and dormancy induction in poplar. Plant Cell 19:2370–2390. doi: 10.1105/tpc.107.052811 PubMedGoogle Scholar
  109. Sarmiento G (1984) The ecology of neotropical savannas. Harvard University Press, CambridgeGoogle Scholar
  110. Satter RL, Galston AW (1973) Leaf movements: Rosetta stone of plant behaviour. Bioscience 23:407–416. doi: 10.2307/1296540 Google Scholar
  111. Satter RL, Sabins DD, Galston AW (1970a) Phytochrome controlled nyctinasty in Albizzia julibrissin. I. Anatomy and fine structure of the pulvinule. Am J Bot 57:374–381. doi: 10.2307/2440864 Google Scholar
  112. Satter RL, Marinoff P, Galston AW (1970b) Phytochrome controlled nyctinasty in Albizzia julibrissin. II. Potassium fluxes as a basis for leaflet movement. Am J Bot 57:916–926. doi: 10.2307/2440989 Google Scholar
  113. Satter RL, Applewhite PB, Kreis DJ, Galston AW (1973) Rhythmic leaflet movement in Albizzia julibrissin. Effects of electrolytes and temperature alteration. Plant Physiol 52:202–207. doi: 10.1104/pp.52.3.202 PubMedGoogle Scholar
  114. Satter RL, Applewhite PB, Galston AW (1974a) Rhythmic potassium flux in Albizzia. Effect of aminophylline, cations, and inhibitors of respiration. Plant Physiol 54:280–285. doi: 10.1104/pp.54.3.280 PubMedGoogle Scholar
  115. Satter RL, Geballe GT, Galston AW (1974b) Potassium flux and leaf movement in Samanea saman. I. Rhythmic movement. J Gen Physiol 64:413–430. doi: 10.1085/jgp.64.4.413 PubMedGoogle Scholar
  116. Satter RL, Geballe GT, Applewhite PB, Galston AW (1974c) Potassium flux and leaf movement in Samanea saman. II. Phytochrome controlled movement. J Gen Physiol 64:424–431. doi: 10.1085/jgp.64.4.431 Google Scholar
  117. Satter RL, Schrempf M, Chaudri J, Galston AW (1977) Phytochrome and circadian clocks in Samanea. Rhythmic redistribution of potassium and chloride within the pulvinus during long dark periods. Plant Physiol 59:231–235. doi: 10.1104/pp.59.2.231 PubMedGoogle Scholar
  118. Satter RL, Xu Y, DePass A (1987) Effects of temperature on H+-secretion and uptake by excised flexor cells during dark-induced closure of Samanea leaflets. Plant Physiol 85:850–855. doi: 10.1104/pp.85.3.850 PubMedGoogle Scholar
  119. Schulze E-D, Lange OL, Evenari M, Kappen L, Buschbom U (1974) The role of air humidity and leaf temperature in controlling stomatal resistance of Prunus armeniaca L. under desert conditions. I. A simulation of the daily course of stomatal resistance. Oecologia 17:159–170. doi: 10.1007/BF00346278 Google Scholar
  120. Schulze E-D, Lange OL, Kappen L, Evenari M, Buschbom U (1975a) The role of air humidity and leaf temperature in controlling stomatal resistance of Prunus armeniaca under desert conditions. II. The significance of leaf water status and internal carbon dioxide concentration. Oecologia 18:219–233. doi: 10.1007/BF00345424 Google Scholar
  121. Schulze E-D, Lange OL, Evenari M, Kappen L, Buschbom U (1975b) The role of air humidity and leaf temperature in controlling stomatal resistance of Prunus armeniaca L. under desert condtions. III. The effect on water use efficiency. Oecologia 19:303–314Google Scholar
  122. Schweingruber FH (1988) Tree rings. Basics and applications of dendrochronology. Kluwer, DordrechtGoogle Scholar
  123. Staiger D (2002) Circadian rhythms in Arabidopsis: time for nuclear proteins. Planta 214:334–344. doi: 10.1007/s004250100662 PubMedGoogle Scholar
  124. Staiger D, Heintzen C (1999) The circadian system of Arabidopsis thaliana. Chronobiol Int 16:1–16. doi: 10.3109/07420529908998708 PubMedGoogle Scholar
  125. Suh S, Moran N, Lee Y (2000) Blue light activates potassium-efflux channels in flexor cells from Samanea saman motor organs via two mechanisms. Plant Physiol 123:833–843. doi: 10.1104/pp.123.3.833 PubMedGoogle Scholar
  126. Sutinen M-L (2007) Lipid changes during cold-acclimation and de-acclimation of herbaceous and woody species. In: Taulavuori E, Taulavuori K (eds) Physiology of northern plans under changing environment. Research Signpost, Kerala, pp 19–37Google Scholar
  127. Takata N, Saito S, Saito CT, Nanjo T, Shinohara K, Uemura M (2009) Molecular phylogeny and expression of poplar circadian clock genes, LHY1 and LHY2. New Phytol 181:808–819. doi: 10.1111/j.1469-8137.2008.02714.x Google Scholar
  128. Taulavuori E, Lüttge U (2007) Membrane responses under stress in relation to seasonal environmental dynamics in northern ecosystems. In: Taulavuori E, Taulavuori K (eds) Physiology of northern plans under changing environment. Research Signpost, Kerala, pp 1–17Google Scholar
  129. Taulavuori K, Sarala M, Taulavuori E (2009) Growth responses to changing light environment. Prog Bot 71Google Scholar
  130. Taylor JE, Whitelaw CA (2001) Signals in abscission. New Phytol 151:323–340. doi: 10.1046/j.0028-646x.2001.00194.x Google Scholar
  131. Tenhunen JD, Lange OL, Braun M, Meyer A, Lösch R, Pereira JS (1980) Midday stomatal closure in Arbutus unedo leaves in a natural macchia under simulated habitat conditions in an environmental chamber. Oecologia 47:365–367. doi: 10.1007/BF00398530 Google Scholar
  132. Tenhunen JD, Lange OL, Braun M (1981) Midday stomatal closure in mediterranean type sclerophylls under simulated habitat conditions in an environmental chamber. II. Effect of the couple of leaf temperature and air humidity on gas exchange of Arbutus unedo and Quercus ilex. Oecologia 50:5–11. doi: 10.1007/BF00378788 Google Scholar
  133. Tenhunen JD, Lange OL, Gebel J, Beyschlag W, Weber JA (1984) Changes in photosynthetic capacity, carboxylation efficiency, and CO2-compensation point associated with midday stomatal closure and midday depression of CO2 exchange of leaves of Quercus suber. Planta 162:193–203. doi: 10.1007/BF00397440 Google Scholar
  134. Thomas B, Vince-Prue D (1997) Photoperiodism in plants. Academic Press, San DiegoGoogle Scholar
  135. Verheyden A, Helle G, Schleser GH, Dehairs F, Beeckman H, Koedam N (2004a) Annual cyclicity in high-resolution stable carbon and oxygen isotope ratios in the wood of the mangrove tree Rhizophora mucronata. Plant Cell Environ 27:1525–1536. doi: 10.1111/j.1365-3040.2004.01258.x Google Scholar
  136. Verheyden A, Kairo JG, Beeckman H, Koedam N (2004b) Growth rings, growth ring formation and age determination in the mangrove Rhizophora mucronata. Ann Bot (Lond) 94:59–66. doi: 10.1093/aob/mch115 Google Scholar
  137. Verheyden A, de Ridder F, Schmitz N, Beeckman H, Koedam N (2005) High-resolution time series of vessel density in Kenyan mangrove trees reveal a link with climate. New Phytol 167:425–435. doi: 10.1111/j.1469-8137.2005.01415.x PubMedGoogle Scholar
  138. Voytsekh O, Seitz SB, Iliev D, Mittag M (2008) Both subunits of the circadian RNA-binding protein CHLAMY1 can integrate temperature information. Plant Physiol 147:2179–2193. doi: 10.1104/pp.108.118570 PubMedGoogle Scholar
  139. Weiser CJ (1970) Cold resistance and injury in woody plants. Science 169:1269–1278. doi: 10.1126/science.169.3952.1269 PubMedGoogle Scholar
  140. Welling A, Palva ET (2006) Molecular control of cold acclimation in trees. Physiol Plant 127:167–181. doi: 10.1111/j.1399-3054.2006.00672.x Google Scholar
  141. Welling A, Palva ET (2008) Involvement of CBF transcription factors in winter hardiness in birch. Plant Physiol 147:1199–1211. doi: 10.1104/pp.108.117812 PubMedGoogle Scholar
  142. Welling A, Kaikuranta P, Rinne P (1997) Photoperiodic induction of dormancy and freezing tolerance in Betula pubescens: involvement of ABA and dehydrins. Physiol Plant 100:119–125. doi: 10.1111/j.1399-3054.1997.tb03461.x Google Scholar
  143. Welling A, Moritz T, Palva ET, Junttila O (2002) Independent activation of cold acclimation by low temperature and short photoperiod in hybrid aspen. Plant Physiol 129:1633–1641. doi: 10.1104/pp.003814 PubMedGoogle Scholar
  144. Welling A, Rinne P, Vihera-Aarnio A, Kontunen-Soppela S, Heino P, Palva ET (2004) Photoperiod and temperature differentially regulate the expression of two dehydrin genes during overwintering of birch (Betula pubescens Ehrh.). J Exp Bot 55:507–516. doi: 10.1093/jxb/erh045 Google Scholar
  145. Wilkins MB (1992) Circadian rhythms: their origin and control. New Phytol 121:347–375. doi: 10.1111/j.1469-8137.1992.tb02936.x Google Scholar
  146. Wimmer R (2002) Wood anatomical features in tree rings as indicators of environmental change. Dendrochronologia 20:21–36. doi: 10.1078/1125-7865-00005 Google Scholar
  147. Woodcock DW (1989) Climate sensitivity of wood-anatomical features in a ring-porous oak (Quercus macrocarpa). Can J For Res 19:639–644. doi: 10.1139/x89-100 Google Scholar
  148. Worbes M (1988) Variety in structure of annual growth zones in Tabebuia barbata (E. Mey) Sandw., Bignoniaceae, a tropical tree species from Central Amazonian inundation forests. Dendrochronologia 6:71–89Google Scholar
  149. Worbes M (1989) Growth rings, increment and age of trees in inundation forests, savannas and a mountain forest in the Neotropics. IAWA J 10:109–122Google Scholar
  150. Worbes M (1999) Annual growth rings, rainfall-dependent growth and long-term growth patterns of tropical trees from the Caparo Forest Reserve in Venezuela. J Ecol 87:391–403. doi: 10.1046/j.1365-2745.1999.00361.x Google Scholar
  151. Wright JS (1991) Seasonal drought and the phenology of understory shrubs in a tropical moist forest. Ecology 72:1643–1657. doi: 10.2307/1940964 Google Scholar
  152. Wright JS (1996) Phenological responses to seasonality in tropical forest plants. In: Mulkey SS, Chazdon RC, Smith AP (eds) Tropical forest plant ecophysiology. Chapman and Hall, New York, pp 440–460Google Scholar
  153. Yasue K, Funada R, Kobayashi O, Ohtani J (2000) The effects of tracheid dimensions on variations in maximum density of Picea glehnii and relationships of climatic factors. Trees (Berl) 14:223–229Google Scholar
  154. Yeang H-Y (2007a) Synchronous flowering of the rubber tree (Hevea brasiliensis) induced by high solar radiation intensity. New Phytol 175:283–289. doi: 10.1111/j.1469-8137.2007.02089.x PubMedGoogle Scholar
  155. Yeang H-Y (2007b) The sunshine-mediated trigger of synchronous flowering in the tropics: the rubber tree as a study model. New Phytol 176:730–735. doi: 10.1111/j.1469-8137.2007.02258.x PubMedGoogle Scholar
  156. Zucker Lowen C, Satter RL (1989) Light-promoted changes in apoplastic K+ activity in the Samanea saman pulvinus, monitored with liquid membrane microelectrodes. Planta 179:421–427. doi: 10.1007/BF00397580 Google Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  1. 1.Institut für BotanikTechnical University of Darmstadt (TUD)DarmstadtGermany

Personalised recommendations