Advertisement

Trees

, Volume 23, Issue 4, pp 787–799 | Cite as

Summer-drought constrains the phenology and growth of two coexisting Mediterranean oaks with contrasting leaf habit: implications for their persistence and reproduction

  • Gabriel Montserrat-MartíEmail author
  • Jesús Julio Camarero
  • Sara Palacio
  • Carmen Pérez-Rontomé
  • Rubén Milla
  • Jorge Albuixech
  • Melchor Maestro
Original Paper

Abstract

This study analyses how coexisting evergreen and deciduous oaks adjust their phenology to cope with the stressful Mediterranean summer conditions. We test the hypothesis that the vegetative and reproductive growth of the winter deciduous (Quercus faginea Lam.) is more affected by summer drought than that of the evergreen [Quercus ilex L. subsp. ballota (Desf.) Samp.]. First, we assessed the complete aboveground phenology of both species during two consecutive years. Shoot and litter production and bud, acorn and secondary growth were monitored monthly. Second, we identified several parameters affected by summer conditions: apical bud size, individual leaf area (LA), leaf mass per area (LMA) and acorn yield in both species, and leaf-fall in Q. faginea; and analysed their variation over 10 years. Q. ilex performed up to 25% of shoot growth and most leaf development during summer, whereas Q. faginea completed most of both phenophases during spring. Secondary growth was arrested in summer under drought conditions. Approximately, 30–40% of bud and 40–50% of acorn growth was undertaken during summer in both species. Summer drought related to differences in LA, LMA and leaf senescence, but not to acorn yield. Both species had similar year-to-year patterns of acorn production, though yields were always lower in Q. faginea. Bud size decreased severely in both species during extremely dry years. In Q. ilex, bud size tended to alternate between years of large and small buds, and these patterns were followed by opposite trends in stem length. In Q. faginea, bud size was more stable through time. Q. ilex was more phenologically active during summer than Q. faginea, indicating a higher tolerance to drought. Furthermore, bud and fruit growth (the only two phenophases that both species performed during summer) were more severely affected by summer drought in Q. faginea than in the evergreen. The differential effects of summer drought on key phenophases for the persistence (bud growth) and colonization ability (fruit production) of both species may have consequences for their coexistence.

Keywords

Acorn development and production Bud development Quercus ilex subsp. ballota Quercus faginea Primary and secondary growth 

Notes

Acknowledgments

We thank Pilar Castro and four anonymous referees for their valuable comments on previous versions of the manuscript, and Helena Lahoz, Patricia Fustero, María Isabel Luengo, Javier Lou, María Lázaro, Pablo Almazán, Inmaculada Benito and Carmen Arroyo for their help in data collection and analysis. Francisco Alberto kindly classified the soil. This study was possible thanks to the collaboration within the GLOBIMED network (Ministerio de Educación y Ciencia, Spain) and it was supported by the MEC-CICyT projects AGF96-0399, CGL2007-66066-C04/BOS and CGL2008-04847-C02-01, DGA projects P-038/96 and GA-LC-011/2008, and INIA projects RTA2005-00100-C02-00 and SUM2006-00025-00-00. JJC acknowledges the support of the “Fundación Aragón I+D”. SP and RM were funded by MEC by a postdoc (SEUI-FECYT) and a Juan de la Cierva contract, respectively. JA was funded by DGA.

References

  1. Acherar M, Rambal S (1992) Comparative water relations of four Mediterranean oak species. Vegetatio 99–100:177–184. doi: 10.1007/BF00118224 CrossRefGoogle Scholar
  2. Amaral Franco J (1990) Quercus. In: Castroviejo S, Laínz M, López González G, Montserrat P, Muñoz Garmendia F, Paiva J, Villar L (eds) Flora Iberica, vol 2. Real Jardín Botánico CSIC, Madrid, pp 15–36Google Scholar
  3. Barbero M, Loisel R, Quézel P (1992) Biogeography, ecology and history of Mediterranean Quercus ilex ecosystems. Vegetatio 99–100:19–34. doi: 10.1007/BF00118207 CrossRefGoogle Scholar
  4. Bonfil C, Cortés P, Espelta JM, Retana J (2004) The role of disturbance in the coexistence of the evergreen Quercus ilex and the deciduous Quercus cerrioides. J Veg Sci 15:423–430. doi: 10.1658/1100-9233(2004)015[0423:TRODIT]2.0.CO;2 Google Scholar
  5. Cabezudo B, Pérez Latorre AV, Navarro T, Nieto Caldera JM (1993) Estudio fenomorfológico en la vegetación del sur de España. II. Alcornocales Mesomediterráneos (Montes de Málaga, Málaga). Acta Bot Malacitana 18:179–188Google Scholar
  6. Campelo F, Gutiérrez E, Ribas M, Nabais C, Freitas H (2007) Relationships between climate and double rings in Quercus ilex from northeast Spain. Can J Res 37:1915–1923. doi: 10.1139/X07-050 CrossRefGoogle Scholar
  7. Castro-Díez P, Montserrat-Martí G (1998) Phenological pattern of fifteen Mediterranean phanaerophytes from Quercus ilex communities of NE-Spain. Plant Ecol 139:103–112. doi: 10.1023/A:1009759318927 CrossRefGoogle Scholar
  8. Castro-Díez P, Villar-Salvador P, Pérez-Rontomé C, Maestro-Martínez M, Montserrat-Martí G (1997) Leaf morphology and leaf chemical composition in three Quercus (Fagaceae) species along a rainfall gradient in NE Spain. Trees (Berl) 11:127–134Google Scholar
  9. CC IP (2007) Summary for policy makers. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor MMHL (eds) Climate Change 2007: The physical science basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, CambridgeGoogle Scholar
  10. Collin P, Badot PM, Millet B (1996) Croissance rythmique et développement du chêne rouge d’Amérique, Quercus rubra L, cultivé en conditions controlées. Ann Sci For 53:1059–1069. doi: 10.1051/forest:19960602 CrossRefGoogle Scholar
  11. Corcuera L, Camarero JJ, Gil-Pelegrín E (2004) Effects of a severe drought on Quercus ilex radial growth and xylem anatomy. Trees (Berl) 18:83–92. doi: 10.1007/s00468-003-0284-9 Google Scholar
  12. Damesin C, Rambal S, Joffre R (1998) Co-occurrence of trees with different leaf habit: a functional approach on Mediterranean oaks. Acta Oecol 19:195–204. doi: 10.1016/S1146-609X(98)80024-6 CrossRefGoogle Scholar
  13. De Lillis M, Fontanella A (1992) Comparative phenology and growth in different species of the Mediterranean maquis of central Italy. Vegetatio 99–100:83–96. doi: 10.1007/BF00118213 CrossRefGoogle Scholar
  14. Del Arco JM, Escudero A, Vega Garrido M (1991) Effects of site characteristics on nitrogen retranslocation from senescing leaves. Ecology 72:701–708. doi: 10.2307/2937209 CrossRefGoogle Scholar
  15. Epron D, Dreyer E (1990) Stomatal and non stomatal limitation of photosynthesis by leaf water deficits in three oak species: a comparison of gas exchange and chlorophyll a fluorescence data. Ann Sci For 47:435–450. doi: 10.1051/forest:19900503 CrossRefGoogle Scholar
  16. Escudero A, Del Arco JM, Sanz IC, Ayala J (1992) Effects of leaf longevity and retraslocation efficiency on the retention time of nutrients in the leaf biomass of different woody species. Oecologia 90:80–87. doi: 10.1007/BF00317812 CrossRefGoogle Scholar
  17. Espelta JM, Cortés P, Molowny-Horas R, Sánchez-Humanes B, Retana J (2008) Masting in acorn production mediated by summer drought reduces acorn predation in two sympatric Mediterranean oaks. Ecology 89:805–817. doi: 10.1890/07-0217.1 PubMedCrossRefGoogle Scholar
  18. FAO (1998) World reference base for soil resources, RomaGoogle Scholar
  19. Floret C, Galan MJ, Floc’h El, Leprince F, Romane F (1989) France. In: Orshan G (ed) Plant pheno-morphological studies in Mediterranean type ecosystems. Kluwer, Dordrecht, pp 9–97Google Scholar
  20. Fontaine F, Chaar H, Colin F, Clément C, Burrus M, Druelle JL (1999) Preformation and neoformation of growth units on 3-year-old seedlings of Quercus petraea. Can J Bot 77:1623–1631. doi: 10.1139/cjb-77-11-1623 CrossRefGoogle Scholar
  21. García-Mozo H, Gómez-Casero MT, Domínguez E, Galán C (2007) Influence of pollen emission and weather-related factors on variations in holm-oak (Quercus ilex subsp. ballota) acorn production. Environ Exp Bot 61:35–40. doi: 10.1016/j.envexpbot.2007.02.009 CrossRefGoogle Scholar
  22. Hanover JW (1963) Geographic variation in ponderosa pine leader growth. For Sci 9:86–95Google Scholar
  23. Hernández I, Gallardo JF, Santa Regina I (1992) Dynamic of organic matter in forests subject to a Mediterranean semi-arid climate in the Duero basin (Spain): litter production. Acta Oecol 13:55–65Google Scholar
  24. Hikosaka K (2005) Leaf canopy as a dynamic system: ecophysiology and optimality in leaf turnover. Ann Bot (Lond) 95:521–533. doi: 10.1093/aob/mci050 CrossRefGoogle Scholar
  25. Isik K (1990) Seasonal course of height and needle growth in Pinus nigra grown in summer-dry Central Anatolia. For Ecol Manage 35:261–270CrossRefGoogle Scholar
  26. Juárez-López J, Escudero A, Mediavilla S (2008) Ontogenetic changes in stomatal and biochemical limitations to photosynthesis of two co-occurring Mediterranean oaks differing in leaf life span. Tree Physiol 28:367–374PubMedGoogle Scholar
  27. MacDonald AD, Mothersill DH, Caesar JC (1984) Shoot development in Betula papyrifera. III. Long-shoot organogenesis. Can J Bot 62:437–445. doi: 10.1139/b84-066 CrossRefGoogle Scholar
  28. McDonald PM (1992) Estimating seed crops of conifer and hardwood species. Can J Res 22:832–838. doi: 10.1139/x92-112 CrossRefGoogle Scholar
  29. Mediavilla S, Escudero A (2003a) Relative growth rate of leaf biomass and leaf nitrogen content in several Mediterranean woody species. Plant Ecol 168:321–332. doi: 10.1023/A:1024496717918 CrossRefGoogle Scholar
  30. Mediavilla S, Escudero A (2003b) Photosynthetic capacity, integrated over the lifetime of a leaf, is predicted to be independent of leaf longevity in some tree species. New Phytol 159:203–211. doi: 10.1046/j.1469-8137.2003.00798.x CrossRefGoogle Scholar
  31. Mediavilla S, Escudero A (2004) Stomatal responses to drought of mature trees and seedlings of two co-occurring Mediterranean oaks. For Ecol Manage 187:281–294CrossRefGoogle Scholar
  32. Mediavilla S, Escudero A, Helmeier H (2001) Internal leaf anatomy and photosynthetic resource-use efficiency: interspecific and intraspecific comparisons. Tree Physiol 21:251–259PubMedGoogle Scholar
  33. Milla R, Castro-Díez P, Maestro-Martínez M, Montserrat-Martí G (2005a) Does the gradualness of leaf shedding govern nutrient resorption from senescing leaves in Mediterranean woody plants? Plant Soil 278:303–313. doi: 10.1007/s11104-005-8770-z CrossRefGoogle Scholar
  34. Milla R, Castro-Díez P, Maestro-Martínez M, Montserrat-Martí G (2005b) Environmental constraints on phenology and internal nutrient cycling in the Mediterranean winter-deciduous shrub Amelanchier ovalis Medicus. Plant Biol 7:182–189. doi: 10.1055/s-2005-837469 PubMedCrossRefGoogle Scholar
  35. Montserrat-Martí G, Pérez-Rontomé C (2002) Fruit growth dynamics and their effects on the phenological pattern of native Pistacia populations in NE Spain. Flora 197:161–174Google Scholar
  36. Montserrat-Martí G, Palacio-Blasco S, Milla Gutiérrez R (2004) Fenología y características funcionales de las plantas leñosas mediterráneas. In: Valladares F (ed) Ecología del bosque mediterráneo en un mundo cambiante. Ministerio de Medio Ambiente, Madrid, pp 129–162Google Scholar
  37. Mooney HA (1983) Carbon-gaining capacity and allocation patterns of Mediterranean climate plants. In: Kruger FJ, Mitchell DT, Jarvis JUM (eds) Mediterranean-type ecosystems. The role of nutrients. Springer, Berlin, pp 103–119Google Scholar
  38. Mudelsee M (2003) Estimating Pearson’s correlation coefficient with bootstrap confidence interval from serial dependent time series. Math Geol 35:651–665. doi: 10.1023/B:MATG.0000002982.52104.02 CrossRefGoogle Scholar
  39. Nitta I, Ohsawa M (1998) Bud structure and shoot architecture of canopy and understorey evergreen broad-leaved trees at their northern limit in East Asia. Ann Bot (Lond) 81:115–129. doi: 10.1006/anbo.1997.0545 CrossRefGoogle Scholar
  40. Ogaya R, Peñuelas J (2006) Contrasting foliar responses to drought in Quercus ilex and Phillyrea latifolia. Biol Plant 50:373–383. doi: 10.1007/s10535-006-0052-y CrossRefGoogle Scholar
  41. Park E, Lee YJ (2001) Estimates of standard deviation of Sperman’s rank correlation coefficients with dependent observations. Comm Stat Simul Comp 30:129–142. doi: 10.1081/SAC-100001863 CrossRefGoogle Scholar
  42. Peñuelas J, Filella I (2001) Responses to a warming world. Science 294:793–795. doi: 10.1126/science.1066860 PubMedCrossRefGoogle Scholar
  43. Pulido F, Díaz M (2005) Regeneration of a Mediterranean oak: a whole cycle approach. Ecoscience 12:92–102. doi: 10.2980/i1195-6860-12-1-92.1 CrossRefGoogle Scholar
  44. Quézel P, Médail F (eds) (2003) Ecologie et biogéographie des forêts du basin méditerranéen. Elsevier, ParisGoogle Scholar
  45. Rapp M (1969) Production de litière et apport au sol d’éléments minéraux dans deux écosystèmes méditerranéens: la fôret de Quercus ilex L. et la garrigue de Quercus coccifera L. Oecol Plant 4:377–410Google Scholar
  46. Reich PB, Ellsworth DS, Walters MB, Vose JM, Gresham C, Volin JC, Bowman WD (1999) Generality of leaf trait relationships: a test across six biomes. Ecology 80:1955–1969CrossRefGoogle Scholar
  47. Remphrey WR, Davidson CG (1994) Shoot preformation in clones of Fraxinus pennsylvanica in relation to site and year of bud formation. Trees (Berl) 8:126–131. doi: 10.1007/BF00196636 CrossRefGoogle Scholar
  48. Remphrey WR, Powell GR (1984) Crown architecture of Larix laricina saplings: shoot preformation and neoformation and their relationships to shoot vigour. Can J Bot 62:2181–2192. doi: 10.1139/b84-298 CrossRefGoogle Scholar
  49. Salleo S, Lo Gullo MA (1990) Sclerophylly and plant water relations in three Mediterranean Quercus species. Ann Bot (Lond) 65:259–270Google Scholar
  50. Thorp TG, Aspinall D, Sedgley M (1994) Preformation of node number in vegetative and reproductive proleptic shoot modules of Persea (Lauraceae). Ann Bot (Lond) 73:13–22. doi: 10.1006/anbo.1994.1002 CrossRefGoogle Scholar
  51. Tretiach M (1993) Photosynthesis and transpiration of evergreen Mediterranean and deciduous trees in an ecotone during a growing season. Acta Oecol 14:341–360Google Scholar
  52. Villar-Salvador P, Castro Díez P, Pérez Rontomé C, Montserrat-Martí G (1997) Stem xylem features in three Quercus (Fagaceae) species along a climatic gradient in NE Spain. Trees (Berl) 12:90–96Google Scholar
  53. Willmott CJ, Rowe CM, Mintz Y (1985) Climatology of the terrestrial seasonal water cycle. J Climatol 5:589–606. doi: 10.1002/joc.3370050602 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • Gabriel Montserrat-Martí
    • 1
    Email author
  • Jesús Julio Camarero
    • 1
  • Sara Palacio
    • 1
    • 2
  • Carmen Pérez-Rontomé
    • 3
  • Rubén Milla
    • 4
  • Jorge Albuixech
    • 1
  • Melchor Maestro
    • 1
  1. 1.Departamento de Conservación de Ecosistemas NaturalesInstituto Pirenaico de Ecología (CSIC)ZaragozaSpain
  2. 2.Macaulay InstituteAberdeenUK
  3. 3.Departamento de Nutrición VegetalEstación Experimental de Aula Dei (CSIC)ZaragozaSpain
  4. 4.Área de Biodiversidad y ConservaciónUniversidad Rey Juan CarlosMóstoles, MadridSpain

Personalised recommendations